select-sort

Introduction to Algorithms exerciese 2.2_2

Consider sorting n numbers stored in array A by first finding the smallest element of A and
exchanging it with the element in A[1]. Then find the second smallest element of A, and
exchange it with A[2]. Continue in this manner for the first n - 1 elements of A. Write
pseudocode for this algorithm, which is known as selection sort. What loop invariant does
this algorithm maintain? Why does it need to run for only the first n - 1 elements, rather than
for all n elements? Give the best-case and worst-case running times of selection sort in Θ-
notation.

#include  < iostream >

#define  Max 100

using  std::cin;
using  std::cout;
using  std::endl;

int  main()
{
    
int A[Max];
    
int num = 0;

    cout 
<< "input serveral intergers:" << endl;
    
    
for(int i=0; cin >> A[i]; ++i)
        
++num;
    
    
    
for(int j=0; j != num; ++j)  //    c1  num
    {                            //   num-1
        int min = A[j];          // c2 num-1
        for(int i=j+1; i != num; ++i)  // c3 num-j-1
            if(A[i] < min)             // c4 num-j-1
            {
                min 
= A[i];            //c5 num-j-1
                A[i] = A[j];           // c5 num-j-1
                A[j] = min;            // c5 num-j-1
            }

    }


    cout 
<< "the sorted sequence is:" << endl;
    
for(i=0; i != num; ++i)
        cout 
<< A[i] << " " ;
    cout 
<< endl;

    
return 0;
            

    

}

 worst case: n*(n-1)/2+n

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值