浅谈对BI工具价值的看法
BI的定义看法
百度百科的定义:
商业智能(Business Intelligence,简称:BI),又称商业智慧或商务智能,指用现代数据仓库技术、线上分析处理技术、数据挖掘和数据展现技术进行数据分析以实现商业价值。
总结是业务系统数据源-数据加工模型-数据可视化分析的过程
BI是否是个通过托拉拽实现数据可视化工具?
最好是认为是。
尤其目前大多数厂商为了销售产品将BI吹嘘的各种全能、数据处理分析一体化,自助分析很简单等等。
虽然商业BI具备了一定数据仓库、数据ETL、甚至整合数据指标、数据治理等功能,但规模数据体量下将数据all in one还是不现实的。利用低上手难度特性
刻意绕开了项目建设过程中存在的挑战和风险。
所以认为BI就是分享数据成果的功能化板块,同时降低个人数据应用门槛和节省前端开发的成本
另外补充一点随着商业经营玩法增多,维度随着递增同时,各类度量指标也是层出不穷。
一帮商业BI具备了一定的计算能力,包括在创建数据集的时候新建模型指标或计算字段,可节省大量数据加工的时间减少存储冗余,提升数据模型的长期支撑能力与应变度
BI建设质量的问题和看法
据Gartner调研表明,在过去十年间,有85%以上的BI项目并不成功。
成功的项目都是相似的,失败的项目各有各的问题。例举几个常见的问题
-
数据质量问题
这几乎所有数据项目的痛点问题,常见的场景各内容间指标不统一、数据冗余改了一份另一份却没改、数据生命周期低无法长期信任等。
通常是一开始就没有规划好数据标准和指标体系,需求先行数据基建却没跟上,就想盖房子没有扎实的地基,塌方也只是早晚的事。 -
性能质量问题
在实际使用体验中,性能体验也是常见的吐槽点,但具体影响性能是哪个部分得根据数据上下游(数据读取、存储、处理、传输与呈现)去分析。
BI 与数据仓库技术、olap 引擎有着直接的上下游关系。其中数据仓库主要起到统一数据源、保证数据准确度的作用;
而 OLAP 引擎则帮助 BI 加速查询。它们组合在一起发力方可获得一个好的体验。影响性能的实际常见的有以下几点- 数据量大
- 复杂的查询语句
- 并发过多系统资源不足或加载性能
-
利用效率问题
人人都是分析师使用初期后往往会出现堆量的现象,从而出现表达逻辑模糊,价值不明确,从而利用率不高、内容管理混乱等问题- 数量多雷同多,质量高的少
- 表盘内容多,价值清晰的少
- 逻辑输出面向对象问题(受众对象,表达逻辑,表现方式)
反过来讲,若想BI项目的成功应该做到以下几点
- 打造数仓确保信息化统一牢固,拥有良好的数据质量
- 深入了解数据传递上下游技术,让各个环节不再有性能瓶颈
- 数据价值表达根据受众对象选择表达方式,有重点逻辑,简明扼要,精益求精
最终从质量、效率、价值的角度形成一个闭环来验证商业BI的项目成败