LabVIEW图形化TensoRT工具包的安装下载分享

‍‍🏡博客主页: virobotics的CSDN博客:LabVIEW深度学习、人工智能博主
🎄所属专栏:『LabVIEW深度学习工具包』
📰如觉得博主文章写的不错或对你有所帮助的话,还望大家多多支持呀! 欢迎大家✌关注、👍点赞、✌收藏、👍订阅专栏

更新(2024/2/27)

本文已于2024年2月27日做更新,主要更新内容为新版本工具包安装方式及报错解决办法~

前言

今天我们一起来看一下如何安装【LabVIEWTensoRT工具包】。

一、LabVIEW图形化TensoRT工具包简介

在这里插入图片描述

✨工具包特点

  1. 图形化编程:无需掌握文本编程基础即可完成机器视觉项目;
  2. 直接的模型转换:可将Onnx模型(部分)转换至FP32、FP16或Int8的tensorRT模型(.trt或.engine);
  3. 极速推理接口:加载tensorRT模型,并进行极速推理(速度为Onnx-tensorRT的2~5倍);
  4. 自定义图层网络:面向资深玩家,可使用INetworkDefinition高级工具实现自己创建网络、查看或编辑已有的Onnx网络;

⛳yolov5s在各工具包下的性能测评对比

在这里插入图片描述
注:测试电脑cpu为i7-11800H,Intel集显为i7-11650G7,独显为笔记本RTX 3070(包括预处理和后处理)

🎇yolov5s在tensoRT工具包下的运行速度

在这里插入图片描述
最新yolo在工具包下的测评速度可查看:https://www.bilibili.com/video/BV12x421Z7e1

二、安装前的准备工作

  • 确保你的电脑有Nvidia独立显卡,如果没有,建议使用其他工具包,TensorRT工具包需要Nvidia独立显卡的支持;
  • 安装LabVIEW图形化TensorRT工具包之前,请先安装LabVIEW 2018 64位或更高版本,切记需要64位版本哦,如已安装,无需重复安装。关于LabVIEW的安装,网上有很多教程,这里就不再赘述;
  • 为了能够成功安装工具包,建议大家升级VIPM为VIPM-21,如有更高版本或已安装此版本,则无需重复安装;VIPM-21下载链接:https://download.csdn.net/download/virobotics/18434228
  • 安装VIPM及LabVIEW AI视觉工具包,下载安装教程:https://blog.csdn.net/virobotics/article/details/123656523
  • 配置cuda及cudnn
    ① 如果你的电脑有Nvidia独立显卡的话,配置cuda 11.8和对应cudnn。
    ② 安装具体方式可查看博文:https://blog.csdn.net/virobotics/article/details/136322017

三、安装LabVIEW TensoRT工具包

1.LabVIEW TensorRT工具包下载

可关注微信公众号:仪酷智能科技,回复关键字:TensorRT工具包 直接获取

2.安装教程视频

如在安装过程有不清楚的地方,可查看安装视频教程,查看链接:https://www.bilibili.com/video/BV1Jt421b71T

3. 安装步骤

  1. 确保已安装cuda 11.8和对应的cudnn,并配置好了环境变量;

  2. 下载文件夹“LabVIEW tensorRT工具包”,文件中包含工具包安装包和测试范例。

  3. 管理员身份打开vipm,双击安装包【virobotics_lib_tensorrt-xxx.vip】,进入VIPM安装环境,点击Install开始安装;安装过程会自动安装并配置tensoRT驱动包
    在这里插入图片描述

  4. 安装过程会弹出cmd黑框,如下图所示时,点击回车即可;
    在这里插入图片描述

  5. 安装需要几分钟,等待一会,出现如下界面,均显示为No Errors即成功安装,点击Finish即可;
    在这里插入图片描述

  6. 成功安装后重启LabVIEW并新建VI,在程序框图面板(记得是程序框图面板,不是前面板哦)中鼠标右键–>点击Addons–>可以看到附加工具包Addons中多了一项"VIRobotics"–>点击VIRobotics–>点击函数选版TensoRT,可以找到我们刚刚安装好的工具包中TensoRT的相关函数。拖入onnx_to_engine.vi如能运行则表示安装成功
    在这里插入图片描述

四、测试工具包是否正常安装

  1. 在“\ LabVIEW TensorRT工具包\LabVIEW TensorRT工具包测试范例”;
  2. 双击example of onnx to engine_test.vi,点击运行。
    在这里插入图片描述
  3. 等待模型成功转换即表示该工具包成功安装,请注意:转换因电脑显卡差异所需时间不同,可能需要几分钟,所以请稍作等待,直到程序运行结束,如下图生成engine即表示工具包可以正常运行。
    在这里插入图片描述

五、常见安装错误

1、VIPM安装界面显示一直在连接LabVIEW,打开LabVIEW之后看到环境变量添加失败提示
在这里插入图片描述

解决办法:点击OK,继续安装工具包,安装完成之后,手动将一下路径添加到系统环境变量Path中。

C:\ProgramData\VIRobotics\driver\TensorRT\lib

在这里插入图片描述

2、拖动onnx_to_engine.vi到程序框图面板报错

解决办法:请确保电脑的cuda已经配置好,请确保\TensorRT\lib已经添加到系统环境变量中,如还报错,建议关机重启

3、运行范例报错;

解决办法:请确保电脑的cuda已经配置好,请确保\TensorRT\lib已经添加到系统环境变量中,请确保电脑已经联网;如还报错,建议关机重启。

总结

以上就是今天要给大家分享的内容,希望对大家有用。如有笔误,还请各位及时指正。后续还会继续给各位朋友分享其他案例,欢迎大家关注博主。我是virobotics(仪酷智能),我们下篇文章见~

如您想要探讨更多关于LabVIEW与人工智能技术,欢迎加入我们的技术交流群:705637299。进群请备注:CSDN

如果文章对你有帮助,欢迎✌关注、👍点赞、✌收藏、👍订阅专栏

推荐阅读

LabVIEW图形化的AI视觉开发平台(非NI Vision),大幅降低人工智能开发门槛
LabVIEW图形化的AI视觉开发平台(非NI Vision)VI简介
LabVIEW AI视觉工具包(非NI Vision)下载与安装教程
LabVIEW开放神经网络交互工具包(ONNX)下载与超详细安装教程
LabVIEW OpenVINO工具包下载与安装教程
LabVIEW图形化TensoRT工具包的安装下载分享
Windows系统上CUDA及CUDNN的安装与配置

👇技术交流 · 一起学习 · 咨询分享,请联系👇

评论 37
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

virobotics

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值