AI Vision Toolkit for LabVIEW重磅升级:2.0版本支持本地部署DeepSeek R1

‍‍🏡博客主页: virobotics(仪酷智能):LabVIEW深度学习、人工智能博主
🎄所属专栏:『LabVIEW AI环境部署』
📑推荐文章:『LabVIEW人工智能深度学习指南』
🍻本文由virobotics(仪酷智能)原创

🥳欢迎大家关注✌点赞👍收藏⭐留言📝订阅专栏

大家好,这里是仪酷智能VIRobotics,我们很高兴地宣布,我们的工具包:**AI Vision Toolkit for OpenVINO for labVIEW(AIVT-OV)**迎来了重大更新!
在这里插入图片描述

此次更新基于英特尔最新发布的OpenVINO™ 2025.0版本,带来了多项令人兴奋的功能和改进。以下是详细的更新内容:

一、🚀性能优化

  • 增强稳定性与性能:我们修复了多个bug,优化了工具包的稳定性和性能,确保用户体验更加流畅。
  • 优化内存管理:新版本我们做了内存管理优化,更加减少了内存占用,提升了系统的稳定性。
  • 提高并发能力:通过改进多线程处理机制,提升了系统的并发处理能力。

二、📶新增功能模块

  • YOLO11集成:新增对YOLO11的支持,并为目标检测、分割、姿态估计以及OBB(定向边界框)提供了示例与文档,帮助开发者更方便地使用YOLO11进行多种计算机视觉任务。
    在这里插入图片描述

  • Track模块:引入了全新的Track模块,支持对象跟踪功能。该模块能够帮助用户实现更高效、准确的动态对象跟踪,适用于视频分析和监控等应用场景。
    在这里插入图片描述

  • SAM高级示例:增加了Segment Anything Model(SAM)的高级示例,展示了其在复杂场景中的强大能力,助力用户在更加复杂的分割任务中取得成功。
    原图(图片来自网络,如有侵权,请联系删除)
    在这里插入图片描述
    智能分割之后的图片
    在这里插入图片描述

  • 大型语言模型(LLM)本地部署推理:与DeepSeek深度集成,支持大型语言模型(LLM)的本地部署推理。这将帮助用户更高效地在本地进行推理,提升应用的响应速度与灵活性。
    在这里插入图片描述
    演示视频详见:LabVIEW本地部署DeepSeek R1

三、🧭驱动程序更新

在这里插入图片描述

OpenVINO驱动更新至2025.0:本次更新中,我们将OpenVINO驱动升级至版本2025.0。新版本提升了推理效率,并增强了对更多硬件平台的支持。主要包括:

  • 新增支持多个大模型:新增支持Qwen 2.5、DeepSeek-R1系列等顶尖中文大模型
  • 图像生成新场景与模型支持:新增对FLUX.1图像生成模型的支持,扩展了生成式AI的应用场景。
  • 大型语言模型(LLM)支持与模型压缩技术:引入Prompt Lookup功能,提升LLM的第二个令牌延迟,并启用了INT8的KV缓存压缩,降低内存占用。
  • 全栈硬件支持:支持最新的Intel Core Ultra 200H系列处理器,并与Triton推理服务器深度集成,提升模型服务性能。
  • 开发者工具链优化:Keras 3.8版本引入OpenVINO后端,支持MobileNet和Bert模型的即插即用,提升云边端部署效率。

四、🌌兼容性说明

新版本与以下操作系统和硬件平台兼容:

  • 操作系统:Windows 10/11、Ubuntu 20/22
  • 硬件平台:支持Intel Core Ultra 200H系列处理器、Intel Xeon处理器、Intel集成GPU、独立GPU、NPU等。

五、🌟安装与升级指南

请按照以下步骤安装或升级到最新版本:

  1. 下载:访问仪酷智能官方网站:https://www.virobotics.net/download,在下载中心点击软件下载。
    在这里插入图片描述

  2. 安装:运行下载的安装包,按照提示完成安装,更多安装问题可以参考安装指南

  3. 升级:如果您已安装旧版本,运行安装包时会自动更新为最新版本,但建议先卸载原来版本,再安装新版本。

  4. 验证:安装完成后,运行工具包自带的示例程序,确保一切正常。

🎯总结

通过这次更新,我们致力于为用户提供更强大的功能和更稳定的体验。基于OpenVINO™ 2025.0的最新特性,我们的工具包在性能和兼容性方面都有了显著提升。

如果您有任何问题或建议,欢迎随时联系我们,我们会继续努力,打造更加完美的工具包。

以上就是今天要给大家分享的内容,希望对大家有用。如有笔误,还请各位及时指正。后续我们将为大家更新更多关于AI模型在LabVIEW的部署案例,欢迎大家关注博主。我是virobotics(仪酷智能),我们下篇文章见~

如您想要探讨更多关于LabVIEW与人工智能技术,欢迎加入我们的技术交流群:705637299。进群请备注:仪酷智能

更多内容可查看:

更多内容可查看

如果文章对你有帮助,欢迎✌关注、👍点赞、✌收藏、👍订阅专栏

推荐阅读

【YOLOv5】LabVIEW+TensorRT的yolov5部署实战(含源码))
【YOLOv5】手把手教你使用LabVIEW ONNX Runtime部署 TensorRT加速,实现YOLOv5实时物体识别(含源码)
【YOLOv8】实战一:手把手教你使用YOLOv8实现实时目标检测
【YOLOv8】实战二:YOLOv8 OpenVINO2022版 windows部署实战
【YOLOv8】实战三:基于LabVIEW TensorRT部署YOLOv8
【YOLOv9】实战一:在 Windows 上使用LabVIEW OpenVINO工具包部署YOLOv9实现实时目标检测(含源码)
【YOLOv9】实战二:手把手教你使用TensorRT实现YOLOv9实时目标检测(含源码)
【YOLOv11】实战一:在LabVIEW 中使用OpenVINO实现YOLOv11
👇技术交流 · 一起学习 · 咨询分享,请联系👇

<think>好的,我现在需要帮用户了解如何将深度求索(DeepSeek)接入自己的器中。首先,用户提到的“DeepSeek”可能指的是深度求索公司的人工智能模型或相关技术。接下来,我得分析用户的具体需求,可能他们想将AI集成到器设备中,比如科研器、工业设备等,以增强数据处理或自动化功能。 首先,我需要明确用户所说的“器”类型。不同器有不同的接口和通信协议,比如有的可能通过USB、GPIB、以太网,或者使用特定的API/SDK。所以第一步可能需要了解器的接口类型和现有的控制系统。 接下来,用户可能需要将DeepSeek的模型部署器上。这里可能涉及几个步骤:模型训练、优化、嵌入到器软件中,以及硬件集成。如果是实时处理,可能还需要考虑计算资源,比如是否需要额外的处理器或使用边缘计算设备。 然后,我需要考虑兼容性和通信问题。比如,DeepSeek模型可能需要特定的框架(如TensorFlow、PyTorch),而器可能运行在特定的操作系统或嵌入式平台上。这时候可能需要将模型转换为适合的格式,或者使用中间件来处理数据交换。 另外,用户可能没有提到数据流的处理。比如器产生的数据如何输入到DeepSeek模型中,模型的输出又如何反馈到器或控制系统。可能需要设计数据预处理和后处理的流程,确保数据格式匹配。 安全性也是一个考虑因素,特别是在工业或医疗设备中,确保接入的AI系统不会引入漏洞,数据隐私得到保护。 最后,测试和验证是关键步骤。集成后需要进行充分的测试,确保系统稳定,模型输出准确可靠,并且不会干扰器的原有功能。 可能还需要分步骤指导用户,比如先确定器接口,再选择模型部署方式,处理数据通信,最后测试集成效果。如果用户有具体器型号或DeepSeek的具体应用场景,可以进一步提供定制化的建议。</think>要将深度求索(DeepSeek)的AI能力接入您的器设备中,需要根据具体场景分步骤实现。以下是技术落地的关键环节和操作建议: ### 一、前期准备 1. **明确需求** - 确定需要AI实现的功能:如数据分析、模式识别、自主决策等 - 评估实时性要求:毫秒级响应需边缘计算,分钟级可考虑云端交互 2. **硬件兼容性检查** - 验证器接口类型:常见接口包括USB/RS-232/GPIB/LAN等 - 确认算力支持:嵌入式设备需测试是否支持TensorRT/NCNN等推理框架 ### 二、技术集成路径 #### 方案A:边缘计算部署(推荐) ```mermaid graph TD A[器设备] -->|原始数据| B(边缘计算单元) B --> C[DeepSeek模型推理] C -->|决策结果| D[设备控制器] ``` - 硬件选型:Jetson系列/NVIDIA EGX/华为Atlas等工业级AI模组 - 部署流程: 1. 模型转换:将训练好的模型转换为ONNX/TensorRT格式 2. 开发接口中间件:使用C++/Python编写设备通信SDK 3. 内存优化:通过量化/剪枝压缩模型体积 #### 方案B:云端协同方案 $$ 通信延时 = \frac{数据量}{带宽} + 网络传输RTT $$ - 适用场景:非实时性分析、需要大规模计算的任务 - 实施要点: - 设计双缓冲机制保证数据连续性 - 采用MQTT/HTTP2协议进行数据传输 - 配置断点续传和异常重试机制 ### 三、开发实施步骤 1. **接口层开发** - 使用LabVIEW/C#开发器控制插件 - 实现数据预处理: $$ x_{norm} = \frac{x - \mu}{\sigma} \quad (\mu:均值,\sigma:标准差) $$ 2. **模型部署** - 推荐使用Docker容器化部署 - 内存管理示例代码: ```python from deepseek import OptimizedModel model = OptimizedModel.load('instrument_v1.dsm') with model.create_inference_session() as sess: result = sess.run(data_buffer) ``` 3. **安全加固** - 添加数据校验层: $$ \forall d \in D_{input},\; \text{verify}(d) = \begin{cases} 1 & \text{if } \|d\|_2 \leq \theta \\ 0 & \text{otherwise} \end{cases} $$ - 采用TLS1.3加密通信信道 ### 四、测试验证 1. 建立测试用例库: - 边界条件测试:满量程/零输入/异常脉冲 - 压力测试:持续72小时满负荷运行 2. 精度验证: $$ \text{误差率} = \frac{1}{N}\sum_{i=1}^N \frac{|y_{pred}^{(i)} - y_{true}^{(i)}|}{y_{true}^{(i)}} \times 100\% $$ 要求误差率<$1\%$(根据具体场景调整) ### 五、维护升级 - 部署OTA更新通道 - 建议保留10-15%的算力余量 - 建立设备健康度监控: $$ H_t = \alpha H_{t-1} + (1-\alpha)(\frac{T_{CPU}}{T_{max}} \cdot \frac{M_{free}}{M_{total}}) $$ 实际实施时,建议先进行概念验证(PoC),使用树莓派/NVIDIA Jetson Nano等开发板搭建原型系统,待核心功能验证通过后再进行工业级部署。若需具体行业的实施方案(如医疗设备/工业质检),可提供更多设备参数以便定制方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

virobotics

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值