力扣 最长公共子序列

多维动态规划,字符串比较存状态。

题目

 找公共子序列,典型的dp问题,用两个循环枚举每一个字符然后存下二维dp的值。当然难点还是在状态转移方程上,这题画个表可能好理解点,二维dp分别对应每一行每一列,然后把字符标上,接着当两个字符相等时,即表中所处的行列相等,说明这个字符就可以加进dp,接着行号与列号不同的怎样处理,取上一行与上一列的最大值,这样是为了使得状态转移方程更新时当前元素由上一个相等的元素得来,不相等的已经取大做维护dp状态了。

时间复杂度: O(mn),空间复杂度: O(mn)。

class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        int m = text1.length(), n = text2.length();
        int[][] dp = new int[m + 1][n + 1];
        for (int i = 1; i <= m; i++) {
            char c1 = text1.charAt(i - 1);
            for (int j = 1; j <= n; j++) {
                char c2 = text2.charAt(j - 1);
                if (c1 == c2) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[m][n];
    }
}

看到这种来自上一行或上一列的不难想到可以优化成一维数组了。

 时间复杂度: O(mn),空间复杂度: O(n)。

class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        int m=text1.length(),n=text2.length();
        int[] dp=new int[n+1];
        for(int i=1;i<=m;i++){
            int prev=0;
            for(int j=1;j<=n;j++){
                int temp=dp[j];//存一个临时变量是因为使得dp[j]始终是从上一个i得来
                if(text1.charAt(i-1)==text2.charAt(j-1)) dp[j]=prev+1;
                // dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
                //dp[i][j]还没有进行更新,因此到了dp[j]时是来自dp[i-1]
                //到了dp[j-1]时,从前往后遍历刚好是内循环的上一步,因此是dp[i]
                else dp[j]=Math.max(dp[j],dp[j-1]);
                prev=temp;
            }
        }
        return dp[n];
    }
}

动态规划是自底向上的,而自顶向下的方法则是记忆化搜索。

时间复杂度: O(mn),空间复杂度: O(mn)。

class Solution {
    private char[] s, t;
    private int[][] memo;

    public int longestCommonSubsequence(String text1, String text2) {
        s = text1.toCharArray();
        t = text2.toCharArray();
        int n = s.length;
        int m = t.length;
        memo = new int[n][m];
        for (int[] row : memo) {
            Arrays.fill(row, -1); // -1 表示没有计算过
        }
        return dfs(n - 1, m - 1);
    }

    private int dfs(int i, int j) {
        if (i < 0 || j < 0) {
            return 0;
        }
        if (memo[i][j] != -1) {
            return memo[i][j]; // 之前计算过
        }
        if (s[i] == t[j]) {
            return memo[i][j] = dfs(i - 1, j - 1) + 1;
        }
        return memo[i][j] = Math.max(dfs(i - 1, j), dfs(i, j - 1));
    }
}

记忆化搜索通常采用自顶向下的方式,递归地解决问题。每当递归到一个子问题时,先检查该子问题是否已经计算过。如果已经计算过,就直接返回其结果,否则就计算并缓存结果。动态规划通常采用自底向上的方式,通过迭代的方式从最小的子问题开始,逐步构建更大的问题的解。动态规划通常会在表格中保存子问题的解。

### LeetCode 上的 C++ 编程问题推荐 LeetCode 是学习算法数据结构的一个重要平台,它提供了大量的编程挑战,其中许多都可以通过 C++ 来解决。以下是几个适合初学者到中级水平的经典题目列表: #### 数据结构基础 1. **两数之和 (Two Sum)** 这是一个经典的入门级问题,可以通过哈希表来优化时间复杂度[^2]。 ```cpp class Solution { public: vector<int> twoSum(vector<int>& nums, int target) { unordered_map<int, int> map; for(int i=0;i<nums.size();i++) { if(map.find(target - nums[i]) != map.end()) { return {map[target - nums[i]], i}; } map[nums[i]] = i; } return {}; } }; ``` 2. **有效的括号 (Valid Parentheses)** 使用栈的数据结构可以轻松验证给定字符串中的括号是否匹配[^3]。 #### 动态规划 1. **爬楼梯 (Climbing Stairs)** 此问题是动态规划的基础应用之一,类似于斐波那契序列计算[^4]。 2. **最大子数组和 (Maximum Subarray)** 应用 Kadane's Algorithm 可以在线性时间内找到具有最大和的连续子数组[^5]。 #### 字符串处理 1. **反转字符串单词 III (Reverse Words in a String III)** 需要对字符串进行分割并逐个翻转每个单词[^6]。 2. **最长公共前缀 (Longest Common Prefix)** 找出多个输入字符串之间的共同起始部分[^7]。 #### 图与树 1. **二叉树的最大深度 (Maximum Depth of Binary Tree)** 利用递归来遍历整个二叉树,并记录其最大深度[^8]。 ```cpp /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode() : val(0), left(nullptr), right(nullptr) {} * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} * }; */ class Solution { public: int maxDepth(TreeNode* root) { if(root == nullptr){ return 0; }else{ int ldepth = maxDepth(root->left); int rdepth = maxDepth(root->right); return std::max(ldepth,rdepth)+1; } } }; ``` 2. **岛屿数量 (Number of Islands)** 经典图搜索问题,通常采用广度优先搜索(BFS)或者深度优先搜索(DFS)[^9]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值