方格取数
题目描述
设有N×N的方格图,我们在其中的某些方格中填入正整数,而其它的方格中则放入数字0。如下图所示:
某人从图中的左上角A出发,可以向下行走,也可以向右行走,直到到达右下角的B点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0)。
此人从A点到B点共走了两次,试找出两条这样的路径,使得取得的数字和为最大。
【输入】
第一行为一个整数N(N≤10),表示N×N的方格图。
接下来的每行有三个整数,第一个为行号数,第二个为列号数,第三个为在该行、该列上所放的数。一行“0 0 0”表示结束。
【输出】
第一个整数,表示两条路径上取得的最大的和。
【输入样例】
8
2 3 13
2 6 6
3 5 7
4 4 14
5 2 21
5 6 4
6 3 15
7 2 14
0 0 0
【输出样例】
67
解题思路
这个题我一开始想的是二维的dp,状态转移方程:
dp[i][j]=max(dp[i-1][j],dp[i][j-1])+mp[i][j];
先按地图走一遍,然后然后做下标记,倒着回去将那些取过的数归0,然后再按地图走一遍,这样想起来感觉没什么错误,但是代码只有80分。。。。。
二维dp80分代码
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N = 1005;
int mp[N][N];
int dp[N][N];
int arr[N][N];
int n;
/*void dfs(int x, int y)
{
if (x > n || y > n)
return;
dp[x][y] = max(dp[x - 1][y], dp[x][y - 1]) + mp[x][y];
if (dp[x - 1][y] > dp[x][y - 1])
arr[x][y] = 1;
else
arr[x][y] = 2;
dfs(x + 1, y);
dfs(x, y + 1);
}*/
int main()
{
int x, y, k, ans = 0;
cin >> n;
while (cin >> x >> y >> k)
{
if (x == 0 && y == 0 && k == 0)
break;
mp[x][y] = k;
}
for (int i = 1; i <= n; i++)//第一次走方格
{
for (int j = 1; j <= n; j++)
{
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) + mp[i][j];
if (dp[i - 1][j] > dp[i][j - 1])
arr[i][j] = 1;//用来标记
else
arr[i][j] = 2;
}
}
ans += dp[n][n];//记录结果
x = n, y = n;
while (x >= 1 && y >= 1)
{//根据标记数组来将取过的数改为0
mp[x][y] = 0;
if (arr[x][y] == 1)
x -= 1;
else
y -= 1;
}
memset(dp, 0, sizeof(dp));//重置dp数组
for (int i = 1; i <= n; i++)//第二次走出方格
{
for (int j = 1; j <= n; j++)
{
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) + mp[i][j];
}
}
ans += dp[n][n];//记录结果
cout << ans << endl;
return 0;
}
搞了很久还是只有80分,后来在网上找了下答案,都是用的四维dp,dp[i][j][k][l]就表示两个人同时走[i][j]表示一个人,[k][l]表示一个人,然后两两组合就有了四个方向了。
状态转移方程:
temp1 = max(dp[i - 1][j][k - 1][l], dp[i - 1][j][k][l - 1]);
temp2 = max(dp[i][j - 1][k - 1][l], dp[i][j - 1][k][l - 1]);
dp[i][j][k][l] = max(temp1, temp2) + mp[i][j];
(这样分开写看起来直观一点)
100分代码
#include<iostream>
#include<algorithm>
using namespace std;
int mp[15][15];
int dp[15][15][15][15];
int main()
{
int n;
cin >> n;
int x, y, v;
while (cin >> x >> y >> v)
{
if (x == 0 && y == 0 && v == 0)
break;
mp[x][y] = v;
}
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n; j++)
{
for (int k = 1; k <= n; k++)
{
for (int l = 1; l <= n; l++)
{
//一共四个方向
int temp1 = max(dp[i - 1][j][k - 1][l], dp[i - 1][j][k][l - 1]);
int temp2 = max(dp[i][j - 1][k - 1][l], dp[i][j - 1][k][l - 1]);
dp[i][j][k][l] = max(temp1, temp2) + mp[i][j];
if (i != k && j != l)//如果两个走的不相同,加上mp[k][l]的值
dp[i][j][k][l] += mp[k][l];
}
}
}
}
cout << dp[n][n][n][n] << endl;//最终答案
return 0;
}