题目来自洛谷。
首先是存储数据,一开始因为写错了这个存储导致第一组数据一直漏掉,找了半天错误!!!
这道题是求“有多少”类型的问题,所以考虑采用动态规划。
考察数组状态,有两个纸条所以考虑开四维数组。不能开二维数组走两遍的原因:两次路径最好不重复,仔细考察题意。开二维数组会把问题复杂化。
最后一步:在最后一个格子的左边或者上方,另外要考虑有两个路径。
转移方程 f[i][j][k][l] = max(f[i - 1][j][k - 1][l], f[i][j - 1][k - 1][l], f[i - 1][j][k][l - 1], f[i][j - 1][k][l - 1])+map[i][j]+map[k][l];
到达一个格子会取走当前的数,所以只需要当两条路径重复时删去重复计算的一次。
#include<iostream>
using namespace std;
int map[81][81] = { 0 };
int max(int a, int b, int c, int d) {
int x = a > b ? a : b;
int y = c > d ? c : d;
return x > y ? x : y;
}
struct cube {
int x;
int y;
int data;
}c[81];
int main() {
int n = 0;
cin >> n;
int x = 0, y = 0, data = 0;
int count = 0;
for (int i = 0; i < 80; i++) {
cin >> x >> y >> data;
if (!x && !y && !data)
break;
c[i].x = x;
c[i].y = y;
c[i].data=data;
count++;
}
for (int i = 0; i < count; i++){
map[c[i].x][c[i].y] = c[i].data;
}
int f[11][11][11][11] = {0};
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
for (int k = 1; k <= n; k++)
for (int l = 1; l <= n; l++)
{
f[i][j][k][l] = max(f[i - 1][j][k - 1][l], f[i][j - 1][k - 1][l], f[i - 1][j][k][l - 1], f[i][j - 1][k][l - 1])+map[i][j]+map[k][l];
if (i == k && j == l) {
f[i][j][k][l] -= map[i][j];
}
}
cout << f[n][n][n][n];
return 0;
}