494. 目标和-每日一题

一、题目

  给你一个整数数组 nums 和一个整数 target 。

  向数组中的每个整数前添加 ‘+’ 或 ‘-’ ,然后串联起所有整数,可以构造一个 表达式 :

例如,nums = [2, 1] ,可以在 2 之前添加 ‘+’ ,在 1 之前添加 ‘-’ ,然后串联起来得到表达式 “+2-1” 。

  返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。

点击查看原题

二、思路

1)回溯法

  使用递归进行回溯,对于每个数都有+和-两种表达式,当数组所有元素都选择完毕,进行累加和的结果判断,等于target就使计数cnt自增1.

2)动态规划

  设定所有元素正数和为 s u m = n u m s [ 0 ] + n u m s [ 1 ] + . . . + n u m s [ n ] sum=nums[0]+nums[1]+...+nums[n] sum=nums[0]+nums[1]+...+nums[n]  有在[0, n]区间的随机集合u,假定根据集合u{k1, k2,…,kx}作为下标,负数和为 n e g = − ∑ y ∈ u n u m s [ y ] = − n u m s [ k 1 ] − n u m s [ k 2 ] − . . . − n u m s [ k x ] neg=-\sum_{y\in{u}}{nums[y]}=-nums[k1]-nums[k2]-...-nums[kx] neg=yunums[y]=nums[k1]nums[k2]...nums[kx]  除开负数集合的正数之和为sum+neg,那么可以得到:
t a g e t = s u m + n e g + n e g = s u m + 2 ∗ n e g     = >     n e g = t a r g e t − s u m 2 taget=sum+neg+neg=sum+2*neg~~~=>~~~neg=\frac{target-sum}{2} taget=sum+neg+neg=sum+2neg   =>   neg=2targetsum  从这个式子中可以得知,neg一定为2的倍数(编程中的neg其实为-neg),并且target-sum一定要小于0才有解。

  根据上面的思路,只需要找到nums数组中有没有能挑选出来元素之和为-neg即可。(这就变成了01背包问题)
  创建数组dp[i][j],代表前i个元素中和为j的方案数量,可以得到状态转移方程:
d p [ i ] [ j ] = { d p [ i − 1 ] [ j ] j < n u m s [ i − 1 ] d p [ i − 1 ] [ j ] + d p [ i − 1 ] [ j − n u m s [ i − 1 ] ] j > = n u m s [ i − 1 ] dp[i][j]= \left\{\begin{matrix} dp[i-1][j]&&j<nums[i-1]\\ dp[i-1][j]+dp[i-1][j-nums[i-1]]&&j>=nums[i-1] \end{matrix}\right. dp[i][j]={dp[i1][j]dp[i1][j]+dp[i1][jnums[i1]]j<nums[i1]j>=nums[i1]
  计算最后结果dp[nums.length][neg]为所求解的值

三、代码

1)回溯法

class Solution {
    public int findTargetSumWays(int[] nums, int target) {
        return backtrace(nums, target, 0, 0);
    }
    private int backtrace(int[] nums, int target, int i, int sum) {
        int cnt = 0;
        if (i == nums.length) {
            return sum == target ? 1 : 0;
        }
        cnt += backtrace(nums, target, i+1, sum + nums[i]);
        cnt += backtrace(nums, target, i+1, sum - nums[i]);
        return cnt;
    }
}

  时间复杂度为O(2),空间复杂度为O(nums.length)。

2)动态规划

class Solution {
    public int findTargetSumWays(int[] nums, int target) {
        int sum = 0;
        for (int num : nums) {
            sum += num;
        }
        int diff = sum - target;	// 这里使用sum-target,求出来的diff就是理应为大于等于0的数
        if (diff < 0 || (diff & 1) == 1) {
            return 0;
        }
        int neg = diff/2;	// 从而neg也表示的为负的负数和
        int[][] dp = new int[nums.length+1][neg + 1];
        dp[0][0] = 1;
        for (int i = 1; i < dp.length; i++) {
            for (int j = 0; j < dp[0].length; j++) {
                dp[i][j] = dp[i-1][j];
                if (j >= nums[i-1]) {
                    dp[i][j] += dp[i-1][j-nums[i-1]];
                }
            }
        }
        return dp[nums.length][neg];
    }
}

  时间复杂度为O(negnums.length),空间复杂度为O(negnums.length)。

3)动态规划优化

  由于状态转移方程中,dp[i][j]只依赖i的状态,所以可以将二维数组压缩成一维,由于一维的情况
  使用同一个一维数组,j<nums[i-1]情况的直接继承上一个状态的赋值可以省掉,节约了时间。(从高位向低遍历)

class Solution {
    public int findTargetSumWays(int[] nums, int target) {
        int sum = 0;
        for (int num : nums) {
            sum += num;
        }
        int diff = sum - target;
        if (diff < 0 || (diff & 1) == 1) {
            return 0;
        }
        int neg = diff/2;
        int[] dp = new int[neg + 1];
        dp[0] = 1;
        for (int i = 0; i < nums.length; i++) {
            for (int j = neg; j >= nums[i]; j--) {	// 判断条件代表直接跳过j<nums[i]的部分,继承上一状态
                dp[j] += dp[j-nums[i]];
            }
        }
        return dp[neg];
    }
}

  时间复杂度为O(neg*nums.length),空间复杂度为O(neg)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

佳鑫大大

你的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值