PTA 09-排序1 排序
文章目录
原题链接
给定N个(长整型范围内的)整数,要求输出从小到大排序后的结果。
本题旨在测试各种不同的排序算法在各种数据情况下的表现。各组测试数据特点如下:
数据1:只有1个元素;
数据2:11个不相同的整数,测试基本正确性;
数据3:103个随机整数;
数据4:104个随机整数;
数据5:105个随机整数;
数据6:105个顺序整数;
数据7:105个逆序整数;
数据8:105个基本有序的整数;
数据9:105个随机正整数,每个数字不超过1000。
输入格式:
输入第一行给出正整数N(≤10
5
),随后一行给出N个(长整型范围内的)整数,其间以空格分隔。
输出格式:
在一行中输出从小到大排序后的结果,数字间以1个空格分隔,行末不得有多余空格。
输入样例:
11
4 981 10 -17 0 -20 29 50 8 43 -5
结尾无空行
输出样例:
-20 -17 -5 0 4 8 10 29 43 50 981
结尾无空行
main+print_sort函数
//输出结果
void print_sort(int A[],int N){
for(int i=0;i<N-1;i++)
printf("%d ",A[i]);
printf("%d",A[N-1]);
}
int main(){
int N;
cin>>N;
int A[N];
for(int i=0;i<N;i++){
cin>>A[i];
}
//Bubble_sort(A,N);
//Insertion_sort(A,N);
//Shell_sort(A,N);
//selection_sort(A,N);
//Heap_sort(A,N);
Merge_sort(A,N);
return 0;
}
1.Bubble_Sort冒泡排序
思路
每次排序将最大的留到最后
优化:使用flag,查看是否发生交换,如果已经不发生交换,则已经排好序
时间复杂度
逆序:O(N^2)
顺序:O(N)
只要是两两元素互换的算法(逆序对原理),O(N^2)
//冒泡排序
void Bubble_sort(int A[],int N){
for(int P=N-1;P>=0;P--){
int flag=0;
for(int i=0;i<P;i++){
if(A[i]>A[i+1]){
swap(A[i],A[i+1]);
flag=1;//发生了交换
}
}
if(flag==0)break;//不发生交换 -> 排好序了
}
print_sort(A,N);
}
2.Insertion_sort插入排序
思路
像打牌一样,抽到一张牌,和之前抽到的牌去做比较,插入
有点:不用swap,只需向后挪+新牌落位
时间复杂度
相较于冒泡排序的时间效率提高了很多,但比起后面的算法仍然过于缓慢。
逆序:O(N^2)
顺序:O(N)
冒泡排序和插入排序都是每次交换消除一个逆序对,即每次交换只能交换相邻的数据,所以时间复杂度才为O(N^2),希尔排序就是受此启发,从交换距离较远的两个数据,尽快使得数组基本有序
//插入排序
void Insertion_sort(int A[],int N){
for(int P=1;P<N;P++){
int temp=A[P];
int i;
for(i=P;i>0&&A[i-1]>temp;i--){
A[i]=A[i-1];//向后挪
}
A[i]=temp;//加入新牌
}
print_sort(A,N);
}
3.希尔排序+Sedgewick增量
思路
Sedgewick+插入排序
类似与插入排序,但是每次比较的不是相邻的数,而是距离为某个值的两个元素。
要定义一个间隔序列: 从大到小,最后是1
如Sedgewick序列:
int Sedgewick[] = {929, 505, 209, 109, 41, 19, 5, 1, 0};
这个序列中的元素一般要是互质的,这样希尔排序性能才会并较好。
时间复杂度
希尔排序只用了54ms,比冒泡和插入的时间减少了很多
一般来说,这要这个序列选取的比较好,希尔排序的时间复杂度一定小于O(N^2)。
//希尔排序+Sedgewick增量
void Shell_sort(int A[],int N){
int Sedgewick[8] = {929, 505, 209, 109, 41, 19, 5, 1};
for(int i=0;i<8;i++){
int D=Sedgewick[i];//希尔增量排序
for(int P=D;P<N;P++){//插入排序
int temp=A[P];
int i;
for(i=P;i>=D&&A[i-D]>temp;i-=D){
A[i]=A[i-D];
}
A[i]=temp;
}
}
print_sort(A,N);
}
4.selection_sort选择排序
思路
每次从未排序的序列中选出一个最小值,与未排序的序列的第一位进行交换。
时间复杂度
时间复杂度取决于每次从未排序的序列中选出一个最小值·
若是使用for循环寻找,则:O(N^2)
虽然都通过测试,但是耗时4523ms非常久。
优化:使用堆排序进行每次从未排序的序列中选出一个最小值·
//选择排序
void selection_sort(int A[],int N){
for(int i=0;i<N;i++){
int minpos=i;
for(int j=i;j<N;j++){
if(A[j]<A[minpos]){
minpos=j;
}
}
swap(A[i],A[minpos]);
}
print_sort(A,N);
}
5.Heap_sort堆排序(代码比较不熟)
思路
注意:堆排序从A[0],即下标为0开始存储
因此左孩子为2i+1,右孩子为2i+2
父节点为floor(i-1)
整体:建堆->循环做(将0和i即最小值进行交换,向下调整)
1.建堆
从i=N/2-1开始向上调整(此时2*i+1=N,i是最后一个元素的父节点)
2.调整堆
从N-1开始向上调整堆
3.PercDown函数——向下调整成最大堆的函数
从start开始,只要孩子不超过N(给定的堆长度),一直向下调整(parent=child)
选择左右孩子中值较大的,与需要调整的A[start]进行比较,插入
时间复杂度
首先将数组中N个数调整为最大堆(O(N)时间);
然后依次把堆顶元素和对应位置的元素交换,然后调整堆(O(NlogN)时间)。
总时间复杂度就是O(NlogN)
//堆排序
//{向下调整成最大堆的函数}
void PercDown(int A[],int start,int N){
int temp=A[start];
int parent,child;
for(parent=start;(2*parent+1)<N;parent=child){
child=2*parent+1;//左孩子
if(child+1<N&&A[child+1]>A[child])child++;//有右孩子并且选择较大的孩子与parent进行比较
if(temp<A[child]){
A[parent]=A[child];
}else{
break;
}
}
A[parent]=temp;
}
void Swap(int A[],int i,int j){
int temp=A[i];
A[i]=A[j];
A[j]=temp;
}
//{调用接口}
void Heap_sort(int A[],int N){
for(int i=N/2-1;i>=0;i--){
PercDown(A,i,N);//建堆
}
for(int i=N-1;i>0;i--){
Swap(A,0,i);//DeleteMax
PercDown(A,0,i);
}
print_sort(A,N);
}
6.Merge_sort归并排序(递归)
思路
分而治之的思想。要将一个大数组排序,可以把它分成两部分,先将这两个小一点的数组排好序,然后再把它们归并成一个大的有序数组。
所以就可以递归的将数组分为两个部分,直到数组大小为1,然后再一步步归并上来。
时间复杂度
T(N) = 2T(N/2) + O(N)
利用主方法,可以求得时间复杂度为 O(NlogN)。
同时空间复杂度为O(N),用来保存临时数组。
//归并排序
//{归并两个子序列}
void Merge(int A[],int TmpA[],int L,int R,int RightEnd){
int LeftEnd=R-1;//左序列的结束下标
int NumberofElement=RightEnd-L+1;//多少个元素
int temp=L;//Cptr
while(L<=LeftEnd&&R<=RightEnd){
if(A[L]<=A[R]){
TmpA[temp++]=A[L++];
}else{
TmpA[temp++]=A[R++];
}
}
//处理剩下的
while(L<=LeftEnd){
TmpA[temp++]=A[L++];
}
while(R<=RightEnd){
TmpA[temp++]=A[R++];
}
//复制回A[]
for(int i=0;i<NumberofElement;i++,RightEnd--){
A[RightEnd]=TmpA[RightEnd];
}
}
//{用于递归}
void MSort(int A[],int TmpA[],int L,int RightEnd){
int Center;
if(L<RightEnd){
Center=(L+RightEnd)/2;
MSort(A,TmpA,L,Center);//递归左边
MSort(A,TmpA,Center+1,RightEnd);//递归右边
Merge(A,TmpA,L,Center+1,RightEnd);//合并
}
}
//{调用接口}
void Merge_sort(int A[],int N){
int *TmpA;
TmpA=(int*)malloc(N*sizeof(int));
if(TmpA!=NULL){
MSort(A,TmpA,0,N-1);
print_sort(A,N);
free(TmpA);
}else{
printf("空间不足\n");
}
}
7.Merge_sort归并排序(非递归)代码不太熟
思路
1.Merge归并两个序列的函数不变
2.Merge_pass函数
将每个length进行Merge
如果最后有剩余的子序列
(1)还剩两个子序列,两个子序列的长度不足2*length
Merge剩余子序列
(2)仅剩一个子序列,直接复制到TmpA中
3.接口函数
while(len<N){
Merge_pass(A,TmpA,N,len);
len*=2;
Merge_pass(TmpA,A,N,len);
len*=2;
}
时间复杂度
可以从结果看出,耗时比递归要少,但是内存空间比递归方法要大。空间换时间
//归并排序——循环(非递归)
//{归并两个子序列}
void Merge(int A[],int TmpA[],int L,int R,int RightEnd){
int LeftEnd=R-1;//左序列的结束下标
int NumberofElement=RightEnd-L+1;//多少个元素
int temp=L;//Cptr
while(L<=LeftEnd&&R<=RightEnd){
if(A[L]<=A[R]){
TmpA[temp++]=A[L++];
}else{
TmpA[temp++]=A[R++];
}
}
//处理剩下的
while(L<=LeftEnd){
TmpA[temp++]=A[L++];
}
while(R<=RightEnd){
TmpA[temp++]=A[R++];
}
//复制回A[]
for(int i=0;i<NumberofElement;i++,RightEnd--){
A[RightEnd]=TmpA[RightEnd];
}
}
//{length为当前子序列长度}
void Merge_pass(int A[],int TmpA[],int N,int length){
//两两归并相邻有序子列
int i,j;
for(i=0;i<=N-2*length;i+=2*length){
Merge(A,TmpA,i,i+length,i+2*length-1);
}
if(i+length<N){//还剩两个子序列,两个子序列的长度不足2*length
Merge(A,TmpA,i,i+length,N-1);
}else{//仅剩一个子序列,直接复制
for(j=i;j<N;j++){
TmpA[j]=A[j];
}
}
}
//{接口}
void Merge_sort2(int A[],int N){
int *TmpA=(int*)malloc(N*sizeof(int));
int len=1;
if(TmpA!=NULL){
while(len<N){
Merge_pass(A,TmpA,N,len);
len*=2;
Merge_pass(TmpA,A,N,len);
len*=2;
}
print_sort(A,N);
free(TmpA);
}else{
printf("空间不足\n");
}
}
8.quicksort快速排序
思路
1.Median3选主元
顺序排好left,center,right值后,将center值藏在right-1,返回A[right-1]即pivot
2.递归选定主元所在位置
++low,小于pivot
–high,大于pivot
否则,如果low<high,位置互换,
否则,退出循环,即找到了pivot的最终位置low
(为什么最终位置是low?——++low,–high最后一轮时,low>high,A[low]是大于pivot的第一个位置)
交换low和right-1的值
进行左递归和右递归(此时pivot的位置为low)
左边为:left-low——1
右边为:low+1——right
3.完成接口
选择&对比
1.选主元
(1)A[0]——有可能遇上顺序序列,消耗O(N^2)
(2)rand()——函数消耗空间大
(3)median3()√
2.cutoff的选择
为什么设置cutoff?——当元素很小时,快速排序的效率不如插入排序来了高,所以设置一个合适的阈值
(1)50——62ms
(2)100——49ms
(3)200——67ms
(4)300——48ms
(5)400——72ms
cutoff最优值:
300>100>50>200>400
时间复杂度
最好:O(NlogN)
最坏:O(N^2)
空间:O(N)
不稳定
Code
#include<iostream>
#include<stdlib.h>
using namespace std;
//输出结果
void print_sort(int A[],int N){
for(int i=0;i<N-1;i++)
printf("%d ",A[i]);
printf("%d",A[N-1]);
}
//插入排序
void Insertion_sort(int A[],int N){
for(int P=1;P<N;P++){
int temp=A[P];
int i;
for(i=P;i>0&&A[i-1]>temp;i--){
A[i]=A[i-1];//向后挪
}
A[i]=temp;//加入新牌
}
}
//快速排序quick sort
void Swap(int A[],int i,int j){
int temp=A[i];
A[i]=A[j];
A[j]=temp;
}
//{获得主元pivot}
int Median3(int A[],int left,int right){
int center=(left+right)/2;
if(A[left]>A[center]){
Swap(A,left,center);
}
if(A[left]>A[right]){
Swap(A,left,right);
}
if(A[center]>A[right]){
Swap(A,center,right);
}
Swap(A,center,right-1);//将pivot放到right-1
return A[right-1];
}
//递归进行快速排序
void quicksort(int A[],int left,int right){
int pivot,low,high,cutoff;
cutoff=50;//修改值
if(cutoff<=right-left){
low=left;
high=right-1;
pivot=Median3(A,left,right);
while(1){
while(A[++low]<pivot){};
while(A[--high]>pivot){};
if(low<high){
Swap(A,low,high);
}else{
break;
}
}
Swap(A,low,right-1);//将pivot换到正确的位置,注意这部要跳出循环,此时的low为正确值
quicksort(A,left,low-1);//递归解决左边
quicksort(A,low+1,right);//递归解决右边
}else{
Insertion_sort(A+left,right-left+1);//元素太少,插入排序
}
}
//{接口}
void Quick_sort(int A[],int N){
quicksort(A,0,N-1);
}
int main(){
int N;
cin>>N;
int A[N];
for(int i=0;i<N;i++){
cin>>A[i];
}
//Bubble_sort(A,N);
//Insertion_sort(A,N);
//Shell_sort(A,N);
//selection_sort(A,N);
//Heap_sort(A,N);
//Merge_sort2(A,N);
Quick_sort(A,N);
print_sort(A,N);
return 0;
}
总结
综上所述,时间效率和空间效率综合最优的算法是希尔排序和堆排序。
但是希尔排序和堆排序的结果都是不稳定的,存在稳定性需求的条件下,归并排序是一个不错的选择,仅需额外付出一定的空间开销。
Code合集
#include<iostream>
#include<stdlib.h>
using namespace std;
//输出结果
void print_sort(int A[],int N){
for(int i=0;i<N-1;i++)
printf("%d ",A[i]);
printf("%d",A[N-1]);
}
//冒泡排序
void Bubble_sort(int A[],int N){
for(int P=N-1;P>=0;P--){
int flag=0;
for(int i=0;i<P;i++){
if(A[i]>A[i+1]){
swap(A[i],A[i+1]);
flag=1;//发生了交换
}
}
if(flag==0)break;//不发生交换 -> 排好序了
}
print_sort(A,N);
}
//插入排序
void Insertion_sort(int A[],int N){
for(int P=1;P<N;P++){
int temp=A[P];
int i;
for(i=P;i>0&&A[i-1]>temp;i--){
A[i]=A[i-1];//向后挪
}
A[i]=temp;//加入新牌
}
print_sort(A,N);
}
//希尔排序+Sedgewick增量
void Shell_sort(int A[],int N){
int Sedgewick[8] = {929, 505, 209, 109, 41, 19, 5, 1};
for(int i=0;i<8;i++){
int D=Sedgewick[i];//希尔增量排序
for(int P=D;P<N;P++){//插入排序
int temp=A[P];
int i;
for(i=P;i>=D&&A[i-D]>temp;i-=D){
A[i]=A[i-D];
}
A[i]=temp;
}
}
print_sort(A,N);
}
//选择排序
void selection_sort(int A[],int N){
for(int i=0;i<N;i++){
int minpos=i;
for(int j=i;j<N;j++){
if(A[j]<A[minpos]){
minpos=j;
}
}
swap(A[i],A[minpos]);
}
print_sort(A,N);
}
//堆排序
//{向下调整成最大堆的函数}
void PercDown(int A[],int start,int N){
int temp=A[start];
int parent,child;
for(parent=start;(2*parent+1)<N;parent=child){
child=2*parent+1;//左孩子
if(child+1<N&&A[child+1]>A[child])child++;//有右孩子并且选择较大的孩子与parent进行比较
if(temp<A[child]){
A[parent]=A[child];
}else{
break;
}
}
A[parent]=temp;
}
void Swap(int A[],int i,int j){
int temp=A[i];
A[i]=A[j];
A[j]=temp;
}
//{调用接口}
void Heap_sort(int A[],int N){
for(int i=N/2-1;i>=0;i--){
PercDown(A,i,N);//建堆
}
for(int i=N-1;i>0;i--){
Swap(A,0,i);//DeleteMax
PercDown(A,0,i);
}
print_sort(A,N);
}
//归并排序
//{归并两个子序列}
void Merge(int A[],int TmpA[],int L,int R,int RightEnd){
int LeftEnd=R-1;//左序列的结束下标
int NumberofElement=RightEnd-L+1;//多少个元素
int temp=L;//Cptr
while(L<=LeftEnd&&R<=RightEnd){
if(A[L]<=A[R]){
TmpA[temp++]=A[L++];
}else{
TmpA[temp++]=A[R++];
}
}
//处理剩下的
while(L<=LeftEnd){
TmpA[temp++]=A[L++];
}
while(R<=RightEnd){
TmpA[temp++]=A[R++];
}
//复制回A[]
for(int i=0;i<NumberofElement;i++,RightEnd--){
A[RightEnd]=TmpA[RightEnd];
}
}
//{用于递归}
void MSort(int A[],int TmpA[],int L,int RightEnd){
int Center;
if(L<RightEnd){
Center=(L+RightEnd)/2;
MSort(A,TmpA,L,Center);//递归左边
MSort(A,TmpA,Center+1,RightEnd);//递归右边
Merge(A,TmpA,L,Center+1,RightEnd);//合并
}
}
//{调用接口}
void Merge_sort(int A[],int N){
int *TmpA;
TmpA=(int*)malloc(N*sizeof(int));
if(TmpA!=NULL){
MSort(A,TmpA,0,N-1);
print_sort(A,N);
free(TmpA);
}else{
printf("空间不足\n");
}
}
//快速排序quick sort
//{获得主元pivot}
int Median3(int A[],int left,int right){
int center=(left+right)/2;
if(A[left]>A[center]){
Swap(A,left,center);
}
if(A[left]>A[right]){
Swap(A,left,right);
}
if(A[center]>A[right]){
Swap(A,center,right);
}
Swap(A,center,right-1);//将pivot放到right-1
return A[right-1];
}
//递归进行快速排序
void quicksort(int A[],int left,int right){
int pivot,low,high,cutoff;
cutoff=400;//修改值
if(cutoff<=right-left){
low=left;
high=right-1;
pivot=Median3(A,left,right);
while(1){
while(A[++low]<pivot){};
while(A[--high]>pivot){};
if(low<high){
Swap(A,low,high);
}else{
break;
}
}
Swap(A,low,right-1);//将pivot换到正确的位置,注意这部要跳出循环,此时的low为正确值
quicksort(A,left,low-1);//递归解决左边
quicksort(A,low+1,right);//递归解决右边
}else{
Insertion_sort(A+left,right-left+1);//元素太少,插入排序
}
}
//{接口}
void Quick_sort(int A[],int N){
quicksort(A,0,N-1);
}
int main(){
int N;
cin>>N;
int A[N];
for(int i=0;i<N;i++){
cin>>A[i];
}
//Bubble_sort(A,N);
//Insertion_sort(A,N);
//Shell_sort(A,N);
//selection_sort(A,N);
//Heap_sort(A,N);
Merge_sort(A,N);
Quick_sort(A,N);//Quick需要在main中printsort因为调用了插入排序
return 0;
}