PTA 09-排序1 排序

PTA 09-排序1 排序


原题链接
给定N个(长整型范围内的)整数,要求输出从小到大排序后的结果。

本题旨在测试各种不同的排序算法在各种数据情况下的表现。各组测试数据特点如下:

数据1:只有1个元素;
数据2:11个不相同的整数,测试基本正确性;
数据3:103个随机整数;
数据4:104个随机整数;
数据5:105个随机整数;
数据6:105个顺序整数;
数据7:105个逆序整数;
数据8:105个基本有序的整数;
数据9:105个随机正整数,每个数字不超过1000。
输入格式:
输入第一行给出正整数N(≤10
5
),随后一行给出N个(长整型范围内的)整数,其间以空格分隔。

输出格式:
在一行中输出从小到大排序后的结果,数字间以1个空格分隔,行末不得有多余空格。

输入样例:
11
4 981 10 -17 0 -20 29 50 8 43 -5
结尾无空行
输出样例:
-20 -17 -5 0 4 8 10 29 43 50 981
结尾无空行

main+print_sort函数

//输出结果
void print_sort(int A[],int N){
    for(int i=0;i<N-1;i++)
        printf("%d ",A[i]);
    printf("%d",A[N-1]);
}
int main(){
    int N;
    cin>>N;
    int A[N];
    for(int i=0;i<N;i++){
        cin>>A[i];
    }
    //Bubble_sort(A,N);
    //Insertion_sort(A,N);
    //Shell_sort(A,N);
    //selection_sort(A,N);
    //Heap_sort(A,N);
    Merge_sort(A,N);
    return 0;
}

1.Bubble_Sort冒泡排序

思路

每次排序将最大的留到最后
优化:使用flag,查看是否发生交换,如果已经不发生交换,则已经排好序

时间复杂度

逆序:O(N^2)
顺序:O(N)
只要是两两元素互换的算法(逆序对原理),O(N^2)

//冒泡排序
void Bubble_sort(int A[],int N){
    for(int P=N-1;P>=0;P--){
        int flag=0;
        for(int i=0;i<P;i++){
            if(A[i]>A[i+1]){
                swap(A[i],A[i+1]);
                flag=1;//发生了交换
            }
        }
        if(flag==0)break;//不发生交换 -> 排好序了
    }
    print_sort(A,N);
}

在这里插入图片描述

2.Insertion_sort插入排序

思路

像打牌一样,抽到一张牌,和之前抽到的牌去做比较,插入
有点:不用swap,只需向后挪+新牌落位

时间复杂度

相较于冒泡排序的时间效率提高了很多,但比起后面的算法仍然过于缓慢。
逆序:O(N^2)
顺序:O(N)

冒泡排序和插入排序都是每次交换消除一个逆序对,即每次交换只能交换相邻的数据,所以时间复杂度才为O(N^2),希尔排序就是受此启发,从交换距离较远的两个数据,尽快使得数组基本有序

//插入排序
void Insertion_sort(int A[],int N){
    for(int P=1;P<N;P++){
        int temp=A[P];
        int i;
        for(i=P;i>0&&A[i-1]>temp;i--){
            A[i]=A[i-1];//向后挪
        }
        A[i]=temp;//加入新牌
    }
    print_sort(A,N);
}

在这里插入图片描述

3.希尔排序+Sedgewick增量

思路

Sedgewick+插入排序
类似与插入排序,但是每次比较的不是相邻的数,而是距离为某个值的两个元素。
要定义一个间隔序列: 从大到小,最后是1
如Sedgewick序列:
int Sedgewick[] = {929, 505, 209, 109, 41, 19, 5, 1, 0};
这个序列中的元素一般要是互质的,这样希尔排序性能才会并较好。

时间复杂度

希尔排序只用了54ms,比冒泡和插入的时间减少了很多
一般来说,这要这个序列选取的比较好,希尔排序的时间复杂度一定小于O(N^2)。

//希尔排序+Sedgewick增量
void Shell_sort(int A[],int N){
    int Sedgewick[8] = {929, 505, 209, 109, 41, 19, 5, 1};
    for(int i=0;i<8;i++){
        int D=Sedgewick[i];//希尔增量排序
        for(int P=D;P<N;P++){//插入排序
            int temp=A[P];
            int i;
            for(i=P;i>=D&&A[i-D]>temp;i-=D){
                A[i]=A[i-D];
            }
            A[i]=temp;
        }
    }
    print_sort(A,N);
}

在这里插入图片描述

4.selection_sort选择排序

思路

每次从未排序的序列中选出一个最小值,与未排序的序列的第一位进行交换。

时间复杂度

时间复杂度取决于每次从未排序的序列中选出一个最小值·
若是使用for循环寻找,则:O(N^2)
虽然都通过测试,但是耗时4523ms非常久。
优化:使用堆排序进行每次从未排序的序列中选出一个最小值·

//选择排序
void selection_sort(int A[],int N){
    for(int i=0;i<N;i++){
        int minpos=i;
        for(int j=i;j<N;j++){
            if(A[j]<A[minpos]){
                minpos=j;
            }
        }
        swap(A[i],A[minpos]);
    }
    print_sort(A,N);
}

在这里插入图片描述

5.Heap_sort堆排序(代码比较不熟)

思路

注意:堆排序从A[0],即下标为0开始存储
因此左孩子为2i+1,右孩子为2i+2
父节点为floor(i-1)

整体:建堆->循环做(将0和i即最小值进行交换,向下调整)

1.建堆
从i=N/2-1开始向上调整(此时2*i+1=N,i是最后一个元素的父节点)
2.调整堆
从N-1开始向上调整堆
3.PercDown函数——向下调整成最大堆的函数
从start开始,只要孩子不超过N(给定的堆长度),一直向下调整(parent=child)
选择左右孩子中值较大的,与需要调整的A[start]进行比较,插入

时间复杂度

首先将数组中N个数调整为最大堆(O(N)时间);
然后依次把堆顶元素和对应位置的元素交换,然后调整堆(O(NlogN)时间)。
总时间复杂度就是O(NlogN)

//堆排序
//{向下调整成最大堆的函数}
void PercDown(int A[],int start,int N){
    int temp=A[start];
    int parent,child;
    for(parent=start;(2*parent+1)<N;parent=child){
        child=2*parent+1;//左孩子
        if(child+1<N&&A[child+1]>A[child])child++;//有右孩子并且选择较大的孩子与parent进行比较
        if(temp<A[child]){
            A[parent]=A[child];
        }else{
            break;
        }
    }
    A[parent]=temp;
}
void Swap(int A[],int i,int j){
    int temp=A[i];
    A[i]=A[j];
    A[j]=temp;
}
//{调用接口}
void Heap_sort(int A[],int N){
    for(int i=N/2-1;i>=0;i--){
        PercDown(A,i,N);//建堆
    }
    for(int i=N-1;i>0;i--){
        Swap(A,0,i);//DeleteMax
        PercDown(A,0,i);
    }
    print_sort(A,N);
}

在这里插入图片描述

6.Merge_sort归并排序(递归)

思路

分而治之的思想。要将一个大数组排序,可以把它分成两部分,先将这两个小一点的数组排好序,然后再把它们归并成一个大的有序数组。
所以就可以递归的将数组分为两个部分,直到数组大小为1,然后再一步步归并上来。

时间复杂度

T(N) = 2T(N/2) + O(N)
利用主方法,可以求得时间复杂度为 O(NlogN)。
同时空间复杂度为O(N),用来保存临时数组。

//归并排序
//{归并两个子序列}
void Merge(int A[],int TmpA[],int L,int R,int RightEnd){
    int LeftEnd=R-1;//左序列的结束下标
    int NumberofElement=RightEnd-L+1;//多少个元素
    int temp=L;//Cptr
    while(L<=LeftEnd&&R<=RightEnd){
        if(A[L]<=A[R]){
            TmpA[temp++]=A[L++];
        }else{
            TmpA[temp++]=A[R++];
        }
    }
    //处理剩下的
    while(L<=LeftEnd){
        TmpA[temp++]=A[L++];
    }
    while(R<=RightEnd){
        TmpA[temp++]=A[R++];
    }
    //复制回A[]
    for(int i=0;i<NumberofElement;i++,RightEnd--){
        A[RightEnd]=TmpA[RightEnd];
    }
}
//{用于递归}
void MSort(int A[],int TmpA[],int L,int RightEnd){
    int Center;
    if(L<RightEnd){
        Center=(L+RightEnd)/2;
        MSort(A,TmpA,L,Center);//递归左边
        MSort(A,TmpA,Center+1,RightEnd);//递归右边
        Merge(A,TmpA,L,Center+1,RightEnd);//合并
    }
}
//{调用接口}
void Merge_sort(int A[],int N){
    int *TmpA;
    TmpA=(int*)malloc(N*sizeof(int));
    if(TmpA!=NULL){
        MSort(A,TmpA,0,N-1);
        print_sort(A,N);
        free(TmpA);
    }else{
        printf("空间不足\n");
    }
    
}

在这里插入图片描述

7.Merge_sort归并排序(非递归)代码不太熟

思路

1.Merge归并两个序列的函数不变
2.Merge_pass函数
将每个length进行Merge
如果最后有剩余的子序列
(1)还剩两个子序列,两个子序列的长度不足2*length
Merge剩余子序列
(2)仅剩一个子序列,直接复制到TmpA中
3.接口函数

while(len<N){
    Merge_pass(A,TmpA,N,len);
    len*=2;
    Merge_pass(TmpA,A,N,len);
    len*=2;
  }

时间复杂度

可以从结果看出,耗时比递归要少,但是内存空间比递归方法要大。空间换时间

//归并排序——循环(非递归)
//{归并两个子序列}
void Merge(int A[],int TmpA[],int L,int R,int RightEnd){
    int LeftEnd=R-1;//左序列的结束下标
    int NumberofElement=RightEnd-L+1;//多少个元素
    int temp=L;//Cptr
    while(L<=LeftEnd&&R<=RightEnd){
        if(A[L]<=A[R]){
            TmpA[temp++]=A[L++];
        }else{
            TmpA[temp++]=A[R++];
        }
    }
    //处理剩下的
    while(L<=LeftEnd){
        TmpA[temp++]=A[L++];
    }
    while(R<=RightEnd){
        TmpA[temp++]=A[R++];
    }
    //复制回A[]
    for(int i=0;i<NumberofElement;i++,RightEnd--){
        A[RightEnd]=TmpA[RightEnd];
    }
}
//{length为当前子序列长度}
void Merge_pass(int A[],int TmpA[],int N,int length){
    //两两归并相邻有序子列
    int i,j;
    for(i=0;i<=N-2*length;i+=2*length){
        Merge(A,TmpA,i,i+length,i+2*length-1);
    }
    if(i+length<N){//还剩两个子序列,两个子序列的长度不足2*length
        Merge(A,TmpA,i,i+length,N-1);
    }else{//仅剩一个子序列,直接复制
        for(j=i;j<N;j++){
           TmpA[j]=A[j];
        }
    }
}
//{接口}
void Merge_sort2(int A[],int N){
    int *TmpA=(int*)malloc(N*sizeof(int));
    int len=1;
    if(TmpA!=NULL){
        while(len<N){
            Merge_pass(A,TmpA,N,len);
            len*=2;
            Merge_pass(TmpA,A,N,len);
            len*=2;
        }
        print_sort(A,N);
        free(TmpA);
    }else{
        printf("空间不足\n");
    }
}

在这里插入图片描述

8.quicksort快速排序

思路

1.Median3选主元
顺序排好left,center,right值后,将center值藏在right-1,返回A[right-1]即pivot

2.递归选定主元所在位置
++low,小于pivot
–high,大于pivot
否则,如果low<high,位置互换,
否则,退出循环,即找到了pivot的最终位置low
(为什么最终位置是low?——++low,–high最后一轮时,low>high,A[low]是大于pivot的第一个位置)
交换low和right-1的值
进行左递归和右递归(此时pivot的位置为low)
左边为:left-low——1
右边为:low+1——right

3.完成接口

选择&对比

1.选主元
(1)A[0]——有可能遇上顺序序列,消耗O(N^2)
(2)rand()——函数消耗空间大
(3)median3()√
2.cutoff的选择
为什么设置cutoff?——当元素很小时,快速排序的效率不如插入排序来了高,所以设置一个合适的阈值
(1)50——62ms
在这里插入图片描述
(2)100——49ms
在这里插入图片描述
(3)200——67ms
在这里插入图片描述
(4)300——48ms
在这里插入图片描述
(5)400——72ms
在这里插入图片描述
cutoff最优值:
300>100>50>200>400

时间复杂度

最好:O(NlogN)
最坏:O(N^2)
空间:O(N)
不稳定

Code

#include<iostream>
#include<stdlib.h>
using namespace std;
//输出结果
void print_sort(int A[],int N){
    for(int i=0;i<N-1;i++)
        printf("%d ",A[i]);
    printf("%d",A[N-1]);
}
//插入排序
void Insertion_sort(int A[],int N){
    for(int P=1;P<N;P++){
        int temp=A[P];
        int i;
        for(i=P;i>0&&A[i-1]>temp;i--){
            A[i]=A[i-1];//向后挪
        }
        A[i]=temp;//加入新牌
    }
}

//快速排序quick sort
void Swap(int A[],int i,int j){
    int temp=A[i];
    A[i]=A[j];
    A[j]=temp;
}
//{获得主元pivot}
int Median3(int A[],int left,int right){
    int center=(left+right)/2;
    if(A[left]>A[center]){
        Swap(A,left,center);
    }
    if(A[left]>A[right]){
        Swap(A,left,right);
    }
    if(A[center]>A[right]){
        Swap(A,center,right);
    }
    Swap(A,center,right-1);//将pivot放到right-1
    return A[right-1];
}
//递归进行快速排序
void quicksort(int A[],int left,int right){
    int pivot,low,high,cutoff;
    cutoff=50;//修改值
    if(cutoff<=right-left){
        low=left;
        high=right-1;
        pivot=Median3(A,left,right);
        while(1){
            while(A[++low]<pivot){};
            while(A[--high]>pivot){};
            if(low<high){
                Swap(A,low,high);
            }else{
                break;
            }
        }
        Swap(A,low,right-1);//将pivot换到正确的位置,注意这部要跳出循环,此时的low为正确值
        quicksort(A,left,low-1);//递归解决左边
        quicksort(A,low+1,right);//递归解决右边
    }else{
        Insertion_sort(A+left,right-left+1);//元素太少,插入排序
    }
}
//{接口}
void Quick_sort(int A[],int N){
    quicksort(A,0,N-1);
}
int main(){
    int N;
    cin>>N;
    int A[N];
    for(int i=0;i<N;i++){
        cin>>A[i];
    }
    //Bubble_sort(A,N);
    //Insertion_sort(A,N);
    //Shell_sort(A,N);
    //selection_sort(A,N);
    //Heap_sort(A,N);
    //Merge_sort2(A,N);
    Quick_sort(A,N);
    print_sort(A,N);
    return 0;
}

总结

综上所述,时间效率和空间效率综合最优的算法是希尔排序和堆排序

但是希尔排序和堆排序的结果都是不稳定的,存在稳定性需求的条件下,归并排序是一个不错的选择,仅需额外付出一定的空间开销。

Code合集

#include<iostream>
#include<stdlib.h>
using namespace std;
//输出结果
void print_sort(int A[],int N){
    for(int i=0;i<N-1;i++)
        printf("%d ",A[i]);
    printf("%d",A[N-1]);
}
//冒泡排序
void Bubble_sort(int A[],int N){
    for(int P=N-1;P>=0;P--){
        int flag=0;
        for(int i=0;i<P;i++){
            if(A[i]>A[i+1]){
                swap(A[i],A[i+1]);
                flag=1;//发生了交换
            }
        }
        if(flag==0)break;//不发生交换 -> 排好序了
    }
    print_sort(A,N);
}
//插入排序
void Insertion_sort(int A[],int N){
    for(int P=1;P<N;P++){
        int temp=A[P];
        int i;
        for(i=P;i>0&&A[i-1]>temp;i--){
            A[i]=A[i-1];//向后挪
        }
        A[i]=temp;//加入新牌
    }
    print_sort(A,N);
}
//希尔排序+Sedgewick增量
void Shell_sort(int A[],int N){
    int Sedgewick[8] = {929, 505, 209, 109, 41, 19, 5, 1};
    for(int i=0;i<8;i++){
        int D=Sedgewick[i];//希尔增量排序
        for(int P=D;P<N;P++){//插入排序
            int temp=A[P];
            int i;
            for(i=P;i>=D&&A[i-D]>temp;i-=D){
                A[i]=A[i-D];
            }
            A[i]=temp;
        }
    }
    print_sort(A,N);
}
//选择排序
void selection_sort(int A[],int N){
    for(int i=0;i<N;i++){
        int minpos=i;
        for(int j=i;j<N;j++){
            if(A[j]<A[minpos]){
                minpos=j;
            }
        }
        swap(A[i],A[minpos]);
    }
    print_sort(A,N);
}
//堆排序
//{向下调整成最大堆的函数}
void PercDown(int A[],int start,int N){
    int temp=A[start];
    int parent,child;
    for(parent=start;(2*parent+1)<N;parent=child){
        child=2*parent+1;//左孩子
        if(child+1<N&&A[child+1]>A[child])child++;//有右孩子并且选择较大的孩子与parent进行比较
        if(temp<A[child]){
            A[parent]=A[child];
        }else{
            break;
        }
    }
    A[parent]=temp;
}
void Swap(int A[],int i,int j){
    int temp=A[i];
    A[i]=A[j];
    A[j]=temp;
}
//{调用接口}
void Heap_sort(int A[],int N){
    for(int i=N/2-1;i>=0;i--){
        PercDown(A,i,N);//建堆
    }
    for(int i=N-1;i>0;i--){
        Swap(A,0,i);//DeleteMax
        PercDown(A,0,i);
    }
    print_sort(A,N);
}
//归并排序
//{归并两个子序列}
void Merge(int A[],int TmpA[],int L,int R,int RightEnd){
    int LeftEnd=R-1;//左序列的结束下标
    int NumberofElement=RightEnd-L+1;//多少个元素
    int temp=L;//Cptr
    while(L<=LeftEnd&&R<=RightEnd){
        if(A[L]<=A[R]){
            TmpA[temp++]=A[L++];
        }else{
            TmpA[temp++]=A[R++];
        }
    }
    //处理剩下的
    while(L<=LeftEnd){
        TmpA[temp++]=A[L++];
    }
    while(R<=RightEnd){
        TmpA[temp++]=A[R++];
    }
    //复制回A[]
    for(int i=0;i<NumberofElement;i++,RightEnd--){
        A[RightEnd]=TmpA[RightEnd];
    }
}
//{用于递归}
void MSort(int A[],int TmpA[],int L,int RightEnd){
    int Center;
    if(L<RightEnd){
        Center=(L+RightEnd)/2;
        MSort(A,TmpA,L,Center);//递归左边
        MSort(A,TmpA,Center+1,RightEnd);//递归右边
        Merge(A,TmpA,L,Center+1,RightEnd);//合并
    }
}
//{调用接口}
void Merge_sort(int A[],int N){
    int *TmpA;
    TmpA=(int*)malloc(N*sizeof(int));
    if(TmpA!=NULL){
        MSort(A,TmpA,0,N-1);
        print_sort(A,N);
        free(TmpA);
    }else{
        printf("空间不足\n");
    }
    
}
//快速排序quick sort
//{获得主元pivot}
int Median3(int A[],int left,int right){
    int center=(left+right)/2;
    if(A[left]>A[center]){
        Swap(A,left,center);
    }
    if(A[left]>A[right]){
        Swap(A,left,right);
    }
    if(A[center]>A[right]){
        Swap(A,center,right);
    }
    Swap(A,center,right-1);//将pivot放到right-1
    return A[right-1];
}
//递归进行快速排序
void quicksort(int A[],int left,int right){
    int pivot,low,high,cutoff;
    cutoff=400;//修改值
    if(cutoff<=right-left){
        low=left;
        high=right-1;
        pivot=Median3(A,left,right);
        while(1){
            while(A[++low]<pivot){};
            while(A[--high]>pivot){};
            if(low<high){
                Swap(A,low,high);
            }else{
                break;
            }
        }
        Swap(A,low,right-1);//将pivot换到正确的位置,注意这部要跳出循环,此时的low为正确值
        quicksort(A,left,low-1);//递归解决左边
        quicksort(A,low+1,right);//递归解决右边
    }else{
        Insertion_sort(A+left,right-left+1);//元素太少,插入排序
    }
}
//{接口}
void Quick_sort(int A[],int N){
    quicksort(A,0,N-1);
}
int main(){
    int N;
    cin>>N;
    int A[N];
    for(int i=0;i<N;i++){
        cin>>A[i];
    }
    //Bubble_sort(A,N);
    //Insertion_sort(A,N);
    //Shell_sort(A,N);
    //selection_sort(A,N);
    //Heap_sort(A,N);
    Merge_sort(A,N);
    Quick_sort(A,N);//Quick需要在main中printsort因为调用了插入排序
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值