图像检索(Image Retrieval)是指根据给定的查询图像,从图像数据库中检索出与查询图像相似的图像的任务。它通常用于在大规模图像数据库中快速有效地搜索和定位图像。图像检索可以应用于多种场景,包括图像搜索引擎、社交媒体内容管理、医学图像检索等。
输入:
- 查询图像(Query Image):需要检索相似图像的查询输入。这通常是用户提供的一张图像。
- 图像数据库(Image Database):存储了大量图像的数据库,待检索图像从中进行搜索。
输出:
- 相似图像集合(Similar Images):与查询图像在视觉上相似的图像集合。通常这些图像按照它们与查询图像的相似度进行排序,最相似的图像排在前面。
图像检索的过程通常包括以下步骤:
- 特征提取(Feature Extraction):对查询图像和数据库中的图像进行特征提取,通常使用图像的局部特征描述符(如SIFT、SURF、ORB等)或者卷积神经网络(CNN)提取图像的特征表示。
- 相似度计算(Similarity Calculation):使用特征表示计算查询图像与数据库中其他图像之间的相似度。常见的相似度度量包括欧氏距离、余弦相似度等。
- 排序和返回(Ranking and Retrieval):根据相似度计算结果对检索到的图像进行排序,并返回与查询图像最相似的图像。
图像检索系统的性能通常通过检索准确率、检索速度等指标来评估。