以社区留言为例。
为了不影响社区的发展,我们要屏蔽侮辱性的言论,所以要构建一个快速过滤器,如果某条留言使用了负面或者侮辱性的语言,那么就讲该留言标识为内容不当,过滤这类内容是很常见的需求,对此问题,我们可以建立两个类别:侮辱类和非侮辱类,我们也分别用数字1和0表示。
准备数据:从文本中构建向量:
我们将文本看成单词向量或者是词条向量(一个词条是字符的任意组合,可以把词条想象为单词,也可以使用非单词的词条,如url,ip地址,或者其他任意的字符串),也就是说将句子转为向量。考虑出现在所有文档中的单词,再决定将哪些词纳入词汇表或者说词汇集合,然后将每一篇文档转换为词汇表上的向量。
python代码:
from numpy import *
def loadDataSet():#创建实验的样本
postingList = [['my','dog','has','flea',\
'problems','help','please'],
['maybe','not','take','him',\
'to','dog','park','stupid'],
['my','dalmation','is','so','cute',\
'I','love','him'],
['stop','posting','stupid','worthless','garbage'],
['mr','licks','ate','my','steak','how',\
'to','stop','him'],
['quit','buying','worthless','dog','food','stupid']]
#切分完成的词条
classVec = [0,1,0,1,0,1]
#类别标签向量
return postingList,classVec
def createVocabList(dataSet):
#将实验样本词条整理成不重复的词条列表,即词汇表
vocabSet = set([])
#创建一个空的不重复的集合
for document in dataSet:
vocabSet = vocabSet | set(document)
#取并集(document用set保证词条里单词不重复,取并集保证两者结合也没有重复的单词)
return list(vocabSet)
#以列表的形式返回词条列表
def setOfWords2Vec(vocabList,inputSet):
#根据词汇表,对实验样本(inputSet)向量化
returnVec = [0]*len(vocabList)
#创建一个与词汇表同等大小的零向量
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] = 1
#如果单词出现在词汇表中,则在词汇表中搜索其位置
#同时置为1
else:
print("the word :%s is not in mu vocabulary!"%word)
return returnVec
#返回文档向量
def trainNBO(trainMatrix,trainCategory):
#朴素贝叶斯分类器训练函数
#参数为文档矩阵(即setOfWords2Vec返回的矩阵向量)和类标签向量
numTrainDocs = len(trainMatrix)
#统计训练文档的数目
numWords = len(trainMatrix[0])
#统计每个文档的词条数
pAbusive = sum(trainCategory)/float(numTrainDocs)
#sum没有参数表示全部相加,实质上就是统计为1的数量(即侮辱性文档的数量)
#除以文档总数,算出概率(即P(ci))
p0Num = zeros(numWords)
# #创建一维零数组,长度与每个文档的词条数相同
p1Num = zeros(numWords)
# #创建一维零数组,长度与每个文档的词条数相同
p0Denom = 0.0
p1Denom = 0.0
#分母初始化为0
for i in range(numTrainDocs):
#遍历统计数据(即P(W0|C1),P(W1|C1)...)
if trainCategory[i] == 1:
#如果类别为侮辱性的
p1Num += trainMatrix[i]
#对应的单词的数加一
p1Denom += sum(trainMatrix[i])
#文档中出现的单词数全部统计相加
else:#类别是非侮辱性的,遍历统计数据(即P(W0|C2),P(W1|C2)...)
p0Num +=trainMatrix[i]
#对应的单词数加一
p0Denom += sum(trainMatrix[i])
# 文档中出现的单词数全部统计相加
p1Vect = p1Num/p1Denom
p0Vect = p0Num/p0Denom
#计算数据,即单词在侮辱性和非侮辱性文档中的出现的概率(p(w|ci))
return p0Vect,p1Vect,pAbusive
#返回属于非侮辱性文档的条件概率,属于侮辱性文档的条件概率和文档属于侮辱类的概率
def classifyNB(vec2Classify,p0Vec,p1Vec,pClass1):
#朴素贝叶斯分类函数,参数是待分类的词条,非侮辱类的条件概率
#侮辱类的条件概率,文档属于侮辱类的概率
p1 = sum(vec2Classify * p1Vec) + log(pClass1)
#计算属于侮辱类的概率
p0 = sum(vec2Classify * p0Vec) + log(1.0-pClass1)
#计算属于非侮辱类的概率
if p1 > p0:
return 1
else:
return 0
def testingNB():#测试函数
listOPosts,listClasses = loadDataSet()
#创建实验样本
myVocabList = createVocabList(listOPosts)
#创建词汇表
trainMat =[]
for postinDoc in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList,postinDoc))
#实验样本向量化并添加到列表中
p0V,p1V,pAb = trainNBO(array(trainMat),array(listClasses))
#训练朴素贝叶斯分类器
testEntry = ['love','my','dalmation']
#测试样本
thisDoc = array(setOfWords2Vec(myVocabList,testEntry))
if classifyNB(thisDoc,p0V,p1V,pAb):
print(testEntry,'属于侮辱类')
else:
print(testEntry,'属于非侮辱类')
testEntry = ['stupid','garbage']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
if classifyNB(thisDoc,p0V,p1V,pAb):
print(testEntry,'属于侮辱类')
else:
print(testEntry,'属于非侮辱类')
if __name__=='__main__':
# listOPosts,listClasses = loadDataSet()
# myVocabList = createVocabList(listOPosts)
# print(myVocabList)
# trainMat = []
# for postinDoc in listOPosts:#遍历每一个词条
# trainMat.append(setOfWords2Vec(myVocabList,postinDoc))
# #将转换的词条向量加入到列表中
# p0V,p1V,pAb = trainNBO(trainMat,listClasses)
# print(pAb)
# print(p0V)
# print(p1V)
testingNB()