1.线性变换
(1)两个基本性质
a.加性:两个向量的和经过变换后等于两个向量变换后的和
b.齐性:一个向量缩放一个倍数变换等于先变换再缩放一个倍数
(2)点积和投影
a.点积::通俗意义上的内积,表示两个向量对应元素的乘积,是欧几里得的标准内积。由此可知向量的长度公式为
对于点积的理解可以从变换和缩放角度加以分析,可以表示一个倍数对另一个量的拉伸或者缩放。由此可以引申到点积的几何意义,一个向量u在另一个向量v方向上的分量长度,和v的长度相乘得到的值叫做点积。其中向量u在向量v上分量的长度,称为u在v上的投影(标投影)
u*v=|u||v|cosθ
**注意:两个向量夹角的cos值可以表示两个向量的相似性
2. 机器学习中常用的是矩阵乘法(矩阵和向量相乘)的几何意义
(1)矩阵A和向量b相乘可以看作矩阵A的每一行的行向量a_i和向量b的点积后的新向量,同时可以理解为向量b在a_i向量的投影,再乘以a_i自身的长度。
(2)坐标映射角度
位置映射角度理解矩阵乘法:可以认为第i维度的单位向量,变换后就是对应变换矩阵的第i 列的列向量。(任何矩阵乘法的变换,可以理解为对变换前的区域进行旋转和沿特定方向缩放结合在一起的操作,如果希望变换后坐标有一定位移,只需要在变换后的结果加一个位移向量&#x