思路:
因为只能沿与边平行的线折,所以每次折叠相当于缩小两条边中的一条边,而如果当前一条边长为x则折叠后最小为(x+1)/2。所以只要目标长度在[(x+1)/2,x)范围内都能通过一次折叠得到。按照这个思路就很容易求得把长为A的边折成B所需要的次数了。
需要注意的是最后结果并不一定是长边折长边;短边折短边最少。
代码:
#include <bits/stdc++.h>
using namespace std;
int Solved(long long t1,long long t2){
int num = 0;
if(t1 < t2)return 0x3f3f3f3f;
while(t1 > t2){
t1 = (t1+1)/2;
++num;
}
return num;
}
int main(){
freopen("folding.in","r",stdin);
freopen("folding.out","w",stdout);
long long W,H,w,h;
while(scanf("%lld %lld %lld %lld",&W,&H,&w,&h) == 4){
if(max(W,H)<max(w,h) || min(W,H)<min(w,h)){
printf("-1\n");
continue;
}
printf("%d\n",min(Solved(W,w)+Solved(H,h),Solved(W,h)+Solved(H,w)));
}
return 0;
}