• 博客(66)
  • 收藏
  • 关注

原创 非计算机专业 0 门槛上手 Trae|知识库精选

如果你使用过 VSCode 编程,那么你应该对 Trae 的界面不会感到陌生,因为它沿用了 VSCode 简洁高效的界面设计;但如果你是小白,只为提高工作效率,那么接下来的比喻可能有助于你理解:想象一下你正在一个设备齐全的厨房做菜,Trae 的界面布局就像厨房一样科学合理,各种工具和功能都有序排列,让你可以轻松找到并使用。

2025-05-13 10:51:31 991

原创 AI 调教指南!一文教会你如何在 Trae IDE 中配置自定义规则

Rules 是一项强大的代码规范管理工具 ,它允许团队或开发者自定义并强制执行代码风格和最佳实践。

2025-05-12 15:17:35 914

原创 全国首个!字节跳动发布 EthLink,填补以太网 GPU Scale-up 互联协议空白

近日,字节跳动正式发布基于以太网极致优化的 GPU Scale-up 互联技术白皮书,推出 EthLink 的创新网络方案,旨在为 AI 集群提供低延迟、高带宽的高速互联传输,满足 AI 应用对 GPU 之间高效通信的需求。

2025-05-12 15:06:05 202

原创 veMLP x veRL :玩转强化学习训练

ICLR 2025 大会即将在新加坡圆满落幕,作为机器学习领域的顶尖学术会议,ICLR 聚集了来自全球的学者与产业界代表。4 月 26 日,字节跳动开源强化学习框架 veRL 的核心参与者童雨轩、禹棋赢以《verl: Flexible and Efficient Infrastructures for Post-training LLMs》为主题,分享了这一框架的技术研发与落地经验,并在问答环节与现场观众展开热烈的互动讨论。

2025-05-12 14:40:03 395

原创 推理加速新范式:火山引擎高性能分布式 KVCache (EIC)核心技术解读

在大模型领域,随着模型参数规模的扩大和上下文长度增加,算力消耗显著增长。在 LLM 推理过程中,如何减少算力消耗并提升推理吞吐已经成为关键性优化方向。以多轮对话场景为例,随着对话轮数增加,历史 token 重算占比持续增长。

2025-05-12 14:36:57 1177

原创 抖音电商如何用扣子 Coze 打造 AI 客服?

除了抖音电商团队,不少企业也基于扣子搭建自己的 Agent 客服系统。在电商客服场景,抖音电商团队基于扣子做了许多有益实践,其中,售后客服这一场景的 Agent 实现了开源,在扣子平台的模板商店即可免费使用。为了让 AI 客服更智能化,抖音电商客服团队基于扣子Coze 平台,提供了 Agent 模式下的全新解决方案,在 AI 客服场景构建了人机协作的新型服务范式。2. Agent 回复+人工监管 :更多情况下是以模型提供服务为主,真人客服对回复内容进行“监管”,在回复存在风险的情况下再进行人为干预。

2025-05-06 10:34:22 1030 1

原创 重构智能设备管理范式:火山引擎端智能解决方案上新,多重 AI 服务即刻享用!

现在,用户通过端智能实例, 一站式集成边缘大模型网关预置的上百种大模型与智能体,满足了多模型和多智能体调用的设备智能需求,同时,通过端智能实例可以直接接入多种自研的面向端侧场景的边缘原生智能体,无需二次开发,即可实现一站式调用,提升大模型与智能体的调用效率。现在,端智能实例产品融合了传统物联网平台能力,在使用端智能实例提供的 AI 服务的同时,依然可以实时监测设备状态、进行 OTA 远程升级等,还支持场景联动、数据转发等功能,并通过设备联动,更好地发挥 AI 服务的价值,真正赋能业务。

2025-05-06 10:30:40 529

原创 基于 Trae 的单细胞 RNA 测序分析与可视化

4.保留局部和全局结构 : UMAP 在降维过程中既保留了数据的局部结构(即相似的数据点在低维空间中仍然保持相近),也尽可能保留了全局结构(即不同簇之间的相对位置)。t-SNE 特别擅长展示数据的局部结构,能够将相似的数据点聚集在一起,形成清晰的簇。目的:PCA 是一种常用的降维方法,可以去除噪声并保留数据的主要结构,为后续的 UMAP 和 t-SNE 分析提供基础。它能够清晰地展示细胞之间的聚类和连续性。目的:邻接图用于后续的 UMAP 和 t-SNE 分析,帮助算法更好地理解细胞之间的局部和全局结构。

2025-05-06 10:28:11 791

原创 Prometheus 性能调优:大模型和智能驾驶可观测的高基数问题

基于上述思路,VMP 提供了基于查询下推的聚合查询功能。但不同于上述不可枚举的业务 label, 这两个领域常见的高基数 label 是 pod name,因为模型训练可能涉及大量的任务(Kubetnetes Job),部分任务的生命周期甚至只有几分钟,大量任务的频繁创建导致 pod name label 的变化非常频繁,从而产生了高基数。随着大模型在各种应用场景井喷式的爆发,接入点的数量高出传统微服务数量几万、几十万甚至更高数量级,这直接提升了监控目标的数量或单个目标暴露的时序量,从而带来高基数问题。

2025-05-06 10:22:13 675

原创 CloudWeGo + APMPlus:打造从开发到可观测的一站式体验

Kitex 是 Golang 微服务 RPC 框架,具有 高性能 、 高可扩展 的特点,支持多消息协议(Thrift/Protobuf/gRPC)、多消息类型(PingPong/Oneway/Streaming)、服务治理、代码生成,具有完备的开源社区生态兼容性。数据分散 、 链路追踪复杂 和 故障传播 三大挑战。作为 CloudWeGo 生态中的最新成员,Eino 的开源进一步扩展了 CloudWeGo 的生态边界,使其不仅适用于传统的微服务场景,还能够赋能大模型驱动的智能化应用开发。

2025-05-06 10:17:31 913

原创 Multi-SWE-bench:首个多语言代码修复基准开源

作为一个标准化、可复现、覆盖多语言的“自动编程”开源评测基准,Multi-SWE-bench 旨在推动自动编程技术从仅能解决单一语言(如 Python)和低复杂度的任务,朝着支持多语言、具备真实问题解决能力的通用型智能体迈进。同时,SWE-bench 中的任务未做难度分级,难以系统衡量模型在不同能力层次上的表现。在构建 Multi-SWE-bench 过程中,团队设计并执行了一套系统性的数据构建流程,共分五个阶段,涵盖从项目筛选、数据采集到数据验证的全过程,最大程度保障数据的真实性、全面性与可用性。

2025-04-27 18:10:27 844

原创 豆包1.5·深度思考模型发布!效果好、低延迟、多模态

今天,在 FORCE LINK AI 创新巡展·杭州站,火山引擎公布了模型、Agent 工具、云基础设施的最新进展,旨在帮助企业更快、更省地构建和部署 Agent 应用:发布豆包 1.5·深度思考模型,升级豆包·文生图模型 3.0、豆包·视觉理解模型。更好的模型性能、更低的延迟、加上视觉推理能力,将为深度思考模型打开更广泛的应用空间、解决更复杂的问题。此外,豆包 1.5·深度思考模型还具备视觉理解能力,可以像人类一样,不光基于文字思考,更能基于所见画面思考,思考更立体,让模型同时拥有“大脑”和“眼睛”。

2025-04-27 18:08:05 2398

原创 小白也可以看懂的 MCP 介绍

在 MCP 超越 LSP 的地方在于其以智能体为中心的执行模型:LSP 主要是被动的(响应来自 IDE 的请求,基于用户输入),而 MCP 是专门为支持自主的 AI 工作流而设计的。类似的,也是由上述过程实现的,由一个工程包装层,将用户请求包装起来,有一个联网的函数,允许大模型进行调用。因为 MCP 将大模型的算法能力与外部环境信息解耦,开发者只需要关注自己的一小部分,即可完成一个 agent 的开发,而普通用户,完全可以做到用已开源的插件定制化自己的 agent。各家的大模型应用都有各家自己的工程包装。

2025-04-27 17:46:55 1020

原创 玩转MCP | 一文看懂如何在 Trae IDE 中解锁 MCP

未来,随着 Trae IDE 可集成的外部工具的持续扩充,我们将看到越来越多的任务可以交由 AI 自主完成,从设计、编码、调试,到部署与文档编写,Trae IDE 将陪伴你真正迈向“智能无限”的协作开发时代。新版本中,Trae IDE 的自定义智能体能力让 AI 能够基于开发者需求灵活调度多维度的工具和资源,从而为任务提供全方位的支持,只需@一下即可召唤智能体,这个过程中,通过 MCP,你的智能体可以无缝调用外部 API、服务和工具,具备更广泛的功能,打造智能体的无限潜力,更好地为你所用。

2025-04-27 17:42:11 797

原创 深度解析:通过 AIBrix 多节点部署 DeepSeek-R1 671B 模型

本文详细介绍了如何通过 AIBrix 分布式推理平台实现 DeepSeek-R1 671B 的多节点部署。DeepSeek-R1 通过渐进式训练框架展现出优秀的逻辑推理能力 —— 在 6710 亿总参数量中,其动态激活的 370 亿参数与 128k 上下文窗口,使其在复杂任务处理中表现卓越。然而,如此庞大的模型规模对部署环境提出了严苛挑战,尤其是分布式推理的资源调度与性能优化。AIBrix 通过自主研发的容器化编排技术,实现了:·多节点 GPU 资源的智能分配·分布式推理服务的无缝管理。

2025-03-27 10:49:10 1107

原创 AI时代的数据底座:火山引擎多模态数据湖的设计与实践

EMR 针对性地结合Ray的autoscale能力, 灵活伸缩保证资源利用率,还丰富了监控指标, 在原有Ray Dashboard的基础上,通过Ray History Server提供持久化的任务日志,并且集成了各种湖格式,提供开箱即用的数据读写。· 开箱即用(进得来): 在传统企业上云场景下,已经有多云部署的趋势,在AI时代下,特别是模型算法公司,需要数据湖是透明、数据Open。一、** 数据源:** 与传统数据库相比,除了结构化数据,还支持半结构化数据,以及非结构化数据,比如文本、图片、音频和视频。

2025-03-27 10:46:27 1143

原创 火山引擎智能数据洞察 ChatBI 适配 DeepSeek-R1 及 DeepSeek-V3

可打通从数据接入、数据整合、查询分析到全员协同共享的全流程,以数据门户、数字大屏、管理驾驶舱等可视化形态,助力业务用户实现智能洞察,让数据发挥价值。作为 Data+AI 领域的先行者,DataWind 一直致力于帮助业务达到最好的实践成果,DataWind 对主流大模型始终保持高效的开放探索态度,融合前沿技术,提供数据服务。企业的关键业务线能够定制专属的智能体,在智能体中明确官方的数据集,确保数据消费的口径保持一致。在场景方面,ChatBI 支持多项业务的标准化数据分析场景的智能扩展。

2025-03-27 10:43:39 483

原创 DeepSeek 3FS 架构分析和思考(下篇)

结果分析 :一开始 3FS 单个节点的平均读能力数据为 33.67 GiB/s,通过更换 CPU、内存配置更好的存储机型,同时采用绑核、调参等优化手段,单个节点的平均读能力最终优化到 38 GiB/s,与官方宣称的性能接近,但整体看 3FS 相比 CloudFS 和 vePFS 读带宽能力略低。尽管当下 vePFS 和 CloudFS 在训练场景可以实现不输于 3FS 的效果,但是放眼未来,用户的数据规模仍然在快速增长,业务复杂度仍然在不断提高,整个文件领域依然面临很大的挑战,广大的从业者任重道远。

2025-03-27 10:30:59 1008

原创 DeepSeek Smallpond 在火山引擎 AI 数据湖的探索实践

LAS 数据湖配套有自己的数据处理框架,以及大量的用于多模数据处理的算子,用户可以开箱使用。这里有两个选项,一个是 Ray,一个是 Built-in (run driver 的时候通过 mode 来指定,如果选项是 Ray,走 Ray 引擎,如果选项是 Scheduler,走 Built-in 引擎)。在该方案中,LAS 中的集群能够无缝的与 Smallpond 融合,只需要在云上开通资源 ,将 ray_address 设置成已开通的资源队里,其余逻辑无需改造,就可以完成数据预处理。

2025-03-26 11:33:45 1307

原创 火山引擎云上实战:QwQ-32B 大模型快速部署

容器服务 VKE 是火山引擎提供的基于 Kubernetes 的容器管理平台,能高效、可靠地管理 AI 业务所需的海量异构计算、存储、网络等资源,并提供云下弹云上、跨云弹性等分布式云原生能力,为 AI 大模型提供灵活、可扩展的部署和运行环境。为了提高开发效率,这里我们推荐使用火山引擎持续交付 CP 的 AI 应用功能,它提供预置模板,集成了主流的 AI 框架,封装了操作系统、AI 框架、依赖库等应用环境,可以完成 QwQ-32B 在容器服务中的快速部署。4.完成启动镜像和模型的配置。

2025-03-26 11:29:37 1220

原创 获取字节火山DeepSeek系列 API完整教程及超多实用玩法!

那时的我们不会想到,大模型赛道的狂奔会如此剧烈:从硅谷到北京,无数工程师用成山的GPU与代码重构了技术普惠的刻度。曾几何时,大模型于开发者而言是隔着API的神秘黑箱,是算力成本与响应速度的艰难取舍,两年前第一次调用GPT-3.5接口时,盯着计费面板上跳动的数字,手心微微发汗——每千Token近4毛钱的价格,让每次点击回车键都像在投掷硬币。如果有提示,就点击“立即开通”,开通一下就可以了。面对这个复杂的推理问题,火山引擎的DeepSeek-R1的推理速度,足足比官方版本的快了 “3分34秒”。

2025-03-26 11:08:10 1234 1

原创 DeepSeek 3FS 架构分析和思考(上篇)

通过固定切分 chunk 的方式,能够有效的规避数据读写过程中与 Meta Service 的交互次数,降低元数据服务的压力,但是也引入另外一个弊端,即对写容错不够友好,当前写入过程中,如果一个 chunk 写失败,是不支持切下一个 chunk 继续写入的,只能在失败的 chunk 上反复重试直到成功或者超时失败。火山引擎文件存储团队阅读和分析了 3FS 的设计文档和源代码,总结出这篇文章,在介绍了 3FS 关键设计的同时,尝试从存储专业的视角挖掘出 3FS 团队在这些设计背后的考量。

2025-03-25 15:06:34 1037

原创 实战案例|利用MarsCode内置的DeepSeek服务,单元测试耗时缩短70%!

1️⃣如果你是新用户,以Visual Studio Code中为例,打开VSCode 扩展窗口,在搜索窗口搜索MarsCode,找到MarsCode 插件单击「install」,完成安装,登录即可使用MarsCode 编程助手。另外,React组件的单元测试,依赖 React Testing Library ,RTL是当前 React 生态中最流行的组件测试解决方案,它提供了一套更贴近真实用户行为的测试工具链。相信在更复杂的业务场景下,优秀的工具能帮助开发者释放更多生产力。

2025-03-25 14:58:24 744

原创 摊牌了!一文教会你轻松上手豆包MarsCode 编程助手!

豆包MarsCode 编程助手有完备的代码解释功能,您可以在选中有疑惑的代码片段后向豆包MarsCode 编程助手发送代码解释指令,编程助手将帮您做出解释。您只需要选中有问题的代码片段,在对话框中输入「/fix」指令或自然语言描述,例如“修复选中的代码片段”,点击「发送」或敲击回车键,即可对报错的代码片段完成智能修复。当您的代码中存在错误时,窗口中的代码文件名称会高亮,名称右侧会提示错误数量。复制代码框中的代码片段后,点击「插入」按钮,就可以顺利将编辑后的代码片段插入对应的位置,替代原先的代码啦。

2025-03-25 14:52:38 956

原创 火山引擎云上实战: DeepSeek R1 大模型(全尺寸)

本文将介绍两种在火山引擎云上部署 DeepSeek-R1 全尺寸模型服务的方案,涵盖大模型推理服务的 Terraform 一键部署、容器化部署、资源弹性伸缩和模型可观测。来源 | 火山引擎云基础在 AI 大模型日新月异的当下,企业在使用大模型时往往面临着数据隐私保护和性能优化的挑战。为了解决这些问题,企业 AI 大模型在云端进行私有化部署成为一种理想的解决方案。私有化部署允许企业在自己的服务器上运行 AI 模型推理服务,保护敏感数据隐私并借助云上的基础设施提高模型推理性能,实现安全和效率的双赢。

2025-03-24 14:53:06 1236

原创 技术沙龙演讲实录 | 张俊钦:火山引擎边缘智能,联通大模型的物理世界

以下是演讲实录:大家下午好,我叫张俊钦,来自。

2025-03-24 14:44:12 902

原创 接入5家DeepSeek模型提供商!火山引擎边缘大模型网关助力一键畅享大模型

根据您所配置的顺序,前一个模型调用失败后,边缘大模型网关将自动依次调用后续模型,直到成功调用一个模型。您可以为您的网关访问密钥配置用于 DeepSeek 调用的模型提供商,创建完成后,即可获得大模型网关 OpenAPI 的请求示例代码与 API Key,并对选配的 DeepSeek 模型发起请求。同时,您也可以通过边缘大模型网关的平台预置模型实现由火山方舟提供的 DeepSeek 模型一键调用,无需与三方模型提供商进行交互或创建调用渠道,您可直接用于通过网关访问密钥的模型配置与调用。

2025-03-24 14:39:55 1036

原创 仅需3步,稳定快速!火山引擎边缘大模型网关全面支持DeepSeek系列模型

边缘大模型网关新增由 DeepSeek 开放平台提供的 DeepSeek R1、DeepSeek V3 以及火山方舟提供的 DeepSeek R1、DeepSeek V3、DeepSeek-R1-Distill-Qwen-7B/32B,您可以将您在第三方模型平台的密钥纳管至边缘大模型网关,以实现通过边缘大模型网关签发的网关访问密钥进行对应模型的访问与调用。边缘大模型网关的平台预置模型中上新了由火山方舟提供的 DeepSeek 模型,您可通过登录产品控制台查看支持模型,并通过点击创建网关访问密钥进行勾选。

2025-03-20 15:14:21 965

原创 MarsCode AI实战:利用DeepSeek 快速搭建你的口语学习搭子

1️⃣如果你是新用户,以Visual Studio Code中为例,打开VSCode 扩展窗口,在搜索窗口搜索MarsCode,找到MarsCode 插件单击「install」,完成安装,登录即可使用MarsCode 编程助手。我想要创建一个web 应用 magic-english,实现口语练习的功能,包含多个页面:section 页面,topic 页面,exercise 页面,这些页面是层层递进的。3️⃣将你的本地仓库与 GitHub 上的远程仓库连接,请确保替换下面的 URL 为你自己的仓库地址。

2025-03-20 15:09:11 1241

原创 豆包MarsCode Agent 登顶 SWE-bench Lite 评测集

我们分析了实验中静态和动态求解的实例分布,如下图所示,在所有实例中,有104 / 300 = 34.67%的实例被 Planner Agent 认为适合动态求解,196 / 300 = 65.3%的实例被认为适合进行静态求解,通过动态方式成功求解53个实例,求解率为51%,静态方式成功求解65个实例,求解率为33%。我们通过程序分析的技术,将仓库中的代码,文档信息进行分析组织,生成一个以变量,函数,类,文件等代码语义节点为实体,文件结构关系、函数调用关系,符号索引关系为边的多向图。

2025-03-20 15:02:55 1099

原创 抖音集团大数据血缘演进与深度应用

如上图示例,表tb包含两列,列都来自于表ta,ta和tb通过任务产生的关系,同时两个表的列也都产生了关系,这是最直接的模型。通过实践验证,该模型能够覆盖到所有血缘关系,在实际存储过程中又考虑到以上两个特点,我们存储了两类模型,写入时使用第二个模型,查询时使用第一个模型,从而满足大数据场景下高效的存储和读取。最后,进一步构建更细颗粒的精细化的血缘,比如行级血缘。另外,还可以做跨部门SLA签署,比如要保某个任务,需要上游一起保障,就可以通过血缘发现相关资产,然后联合相关部门签署SA,从而保障整个资产及时性。

2025-03-19 14:57:21 599

原创 Apache Paimon 在抖音集团多场景中的优化实践

Apache Paimon 的本地维表可以极大的减少传统外部 KV 存储的请求数量,但在大流量场景中,我们注意到本地维表刷新是同步的,同时没有按照 bucket 进行 shuffle,导致维表变化较快时,吞吐有明显尖刺,我们将结合 Flink 继续优化维表的访问性能;原有链路中为了减少维表服务压力,所以本地 Cache TTL设置为 50 min,数据新鲜度较低,在Paimon 维表中默认每 10s 会主动检查维表数据是否有更新,并主动更新本地缓存,数据新鲜度更高。

2025-03-19 14:55:03 1057

原创 以抖音集团信息流推荐场景为例|如何做复杂的AB实验设计?

从一个具有网络效应的实验案例来看:在传统的随机分流A/B实验中,如果实验组和对照组用户在同一个社交网络中,实验处理可能会通过社交互动影响到对照组用户,即实验组用户通过私信分享等方式将内容传递给对照组用户,导致对照组用户也出现类似实验组的行为,从而削弱对比效果,导致效应大小被低估。模块度,简单来说,指的是社区内部边和随机网络的对比,如果社区内部边的稠密度比随机网络要高很多,那么就说明社区是集群状的,也就是进行了正确的社区分割。此时,对照组所反映的并非策略未生效时的表现,而是在策略某种非直接影响下的特殊表现。

2025-03-19 14:33:51 749

原创 抖音集团离线数仓血缘基础能力的构建与应用

将这些信息映射到右侧的表里(假设第一张表是table1,第二张表是table2,第三张表是table3,且它们分别有A1、A2、A3、A4、A5等列),通过横向和纵向的组合划分,可以将检索的资源精确地定位到行列交错的标注黄色的资源方块上。在技术实现上,无论采用哪种脱敏时机,都需要首先解析和优化用户的SQL,将其转化为执行计划信息,再读取用户查询的表,检查表中是否配置了脱敏规则。以这些节点为根基,逐层向下扩展,通过分析每一层的SQL语义,利用SQL语义进行标签的传播,从而完成全局标签的扩展。

2025-03-18 14:22:31 732

原创 【企业级文生视频】互动双语视频生成器闪亮登场 !

只要组合得当,创造出来的产品绝对能带来极大的作用。这个阶段,双语视频生成器化身全能战士,一人完成编导,设计,剪辑,配音的工作,一步一步完成故事角色和分镜画面,视频,配音,字幕的制作,最终剪辑和合成生动有趣的小视频。一声令下,双语视频生成器就化身专业编剧,精心编排故事的每一个分镜,把故事拆分成了一帧帧的精美画面:清晰明了的分镜序号,恰到好处的景别设置,栩栩如生的画面描述,生动鲜活的角色台词。从主题的创意衍生,分镜的精心编排,故事的完美呈现,以及贴心的语音陪看,双语视频生成已经迫不及待在火山方舟等着大家啦。

2025-03-18 14:18:36 372

原创 单元化架构在字节跳动的落地实践

跨单元网络分级 QoS 管控:长距离专线建设成本高,带宽有限,也更容易因为各类异常导致可用带宽变少,无法满足所有场景的跨单元网络传输的需求,因此需要对不同类型的跨单元流量进行分级 QoS 管控。字节跳动目前的存储对 AP 场景更友好(侧重抖音这种社交类场景),主要围绕单 Region 构建,在多单元场景下对于电商、支付类(对数据一致要求非常高)的业务支持较弱,在异地单元化架构下强依赖数据同步能力来支持多单元数据多活能力,业务上的限制偏大(例如写只能统一在一个单元),有跨 Region 强一致数据库的需求。

2025-03-18 14:12:29 1053

原创 边缘云原生操作系统的设计与思考

火山引擎边缘云,融合异构算力和边缘网络,构建在大规模边缘基础设施之上的云计算服务,覆盖了现场边缘到云边缘,形成了以边缘位置的计算、分发、网络、存储、安全、智能为核心能力的新一代分布式云计算平台,这个平台的底座就是边缘云原生操作系统,目前,火山引擎边缘云在全球覆盖了 2500+ 节点,拥有 150T+ 的储备带宽。边缘云原生操作系统,统一纳管了字节跳动边缘计算硬件资源,在小型化、集成化、轻量化的基础上,为业务就近提供虚拟机、裸金属、容器等多形态算力,实现算力服务混合部署、跨区域弹性调度。

2025-03-17 13:23:35 734

原创 字节跳动冯佳时:大语言模型在计算机视觉领域的应用、问题和我们的解法

在我们的模型与 LISA 模型的比较中,我们模型的能力更强,但运算量却减少了一半,显示出更高的效率。因此,开发更高效、更类似人类的智能学习方法,充分利用大语言模型已经从文本中学到的物理世界知识,提高对现实世界任务的学习效率,并增强交互的可靠性,将是未来计算机视觉领域研究的重点,也是我们特别关注的研究方向。而分割则是在识别和检测的基础上的进一步深化,它要求模型不仅对图像内容进行全局理解,还要对图像中每个像素的细节进行理解,明确每个像素属于哪个物体,代表什么含义,这是视觉理解的终极问题。

2025-03-17 13:21:28 1067

原创 扣子实践 | 汽车线上营销助手:功能实现与效果分析

这样可以有效减轻系统的负荷。毕竟,转化的关键在于让客户喜欢上领克车系,而不是让客户认为某个竞品品牌更好,然后你也觉得它更好,最终为别的品牌做了宣传。我认为,AI 智能体不应仅仅是一个提示词的工具,而应该是一个能够跨行业应用的全面工作流平台,完全由人为控制和管理。这已经相当不错了,尤其是对于那些不怎么用提示词的玩家来说,至少对于我们想要达到的效果而言,他已经可以打个及格分了。在开发助手的过程中,最初的设想只是实现一个简单的车辆介绍功能,但随着开发的进行,这个想法不断扩展和深化,最终成就了现在的线上营销助手。

2025-03-17 12:01:23 707

原创 用扣子快速复刻 Genspark 聚合搜索功能

传统搜索引擎在应对用户需求时显得力不从心,效率亟待提升。当你在进行旅行规划、搜寻关键信息时,是不是常常被泛滥的广告和真假难辨的垃圾信息困扰?AI搜索已经成为了非常明确的共识,最近 Genspark 冉冉升起,主打没有偏见和SEO驱动的内容,提供可信的有价值的结果,其中聚合搜索的功能被用户广泛称赞!我们用扣子快速复刻了 Genspark 聚合搜索功能,能快速理解你的命题,运行复杂的信息检索和分析过程,最终给出一个基于事实的判断。

2025-03-13 11:37:04 414

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除