问题描述
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
示例 :
输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
- 向右 -> 向下 -> 向下
- 向下 -> 向下 -> 向右
- 向下 -> 向右 -> 向下
解答
使用f[i][j]表示到位置[i][j]有几条路可以走
初始条件: f[0][0] = 1
状态转移方程: f[i][j] = f[i-1][j] + f[i][j-1]
边界条件:第一列 j=0: f[i][j] = f[i-1][j]; 第一行 i=0: f[i][j] = f[i][j-1];
int uniquePaths(int m, int n) {
int count =0 ;
int ** f = (int ** )malloc(sizeof(int *) * m);
for(int i =0; i<m; i++){
f[i] = (int *)malloc(sizeof(int) * n);
}
f[0][0] = 1;
for(int i =0; i<m ; i++){
for(int j = 0; j<n ; j++){
if(i > 0 && j>0){
f[i][j] = f[i-1][j] + f[i][j-1];
}
else if(i>0){
f[i][j] = f[i-1][j];
}
else if(j>0){
f[i][j] = f[i][j-1];
}
}
}
return f[m-1][n-1];
}