【数据结构与算法】二分图的最大匹配

39 篇文章 0 订阅
25 篇文章 0 订阅
本文介绍了如何利用匈牙利算法解决二分图的最大匹配问题,通过寻找增广路径,确保每个节点至少被匹配一次,最终输出二分图的最大匹配数。
摘要由CSDN通过智能技术生成

问题描述

给定一个二分图,其中左半部包含 n1 个点(编号 1∼n1),右半部包含 n2 个点(编号 1∼n2),二分图共包含 m 条边。

数据保证任意一条边的两个端点都不可能在同一部分中。

请你求出二分图的最大匹配数。

二分图的匹配:给定一个二分图 G,在 G 的一个子图 M 中,M 的边集 {E} 中的任意两条边都不依附于同一个顶点,则称 M 是一个匹配。

二分图的最大匹配:所有匹配中包含边数最多的一组匹配被称为二分图的最大匹配,其边数即为最大匹配数。

输入格式
第一行包含三个整数 n1、 n2 和 m。

接下来 m 行,每行包含两个整数 u 和 v,表示左半部点集中的点 u 和右半部点集中的点 v 之间存在一条边。

输出格式
输出一个整数,表示二分图的最大匹配数。

问题求解

匈牙利算法是由匈牙利数学家Edmonds于1965年提出,因而得名。匈牙利算法是基于Hall定理中充分性证明的思想,它是部图匹配最常见的算法,该算法的核心就是寻找增广路径,它是一种用增广路径求二分图最大匹配的算法。
恋爱大匹配:一对一匹配时,如果女方没有匹配过,直接A上去
否则看看她匹配的男生有没有其他女生的选择,有就A上去,并且让男生选择另外一个选择(递归)find(match[j])

#include <iostream>
#include<cstring>

using namespace std;
int h[510], ne[100010],e[100010];
int st[510];
int match[510];
int idx;
int n1, n2,m;

void add(int a, int b ){
    e[idx] = b;
    ne[idx] = h[a];
    h[a] = idx++;
}

bool find(int a){
    for(int j = h[a]; j!=-1; j = ne[j]){
        int u = e[j];
        if(st[u]==0){
            st[u] =1;
            if(match[u] ==0 || find(match[u])){
                match[u]  = a;
                return true;
            }
        }
    }
    return false;
}

int main(){
    memset(h, -1, sizeof(h));
    cin>>n1>>n2>>m;
    int a,b;
    for(int i =0; i<m; i++){
        cin>>a>>b;
        add(a,b);
    }
    int res =0;
    for(int i =1; i<=n1; i++){
        memset(st, 0 ,sizeof(st));
        if(find(i)){res++;}
    }
    cout<<res;
    
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值