问题描述
给定一个二分图,其中左半部包含 n1 个点(编号 1∼n1),右半部包含 n2 个点(编号 1∼n2),二分图共包含 m 条边。
数据保证任意一条边的两个端点都不可能在同一部分中。
请你求出二分图的最大匹配数。
二分图的匹配:给定一个二分图 G,在 G 的一个子图 M 中,M 的边集 {E} 中的任意两条边都不依附于同一个顶点,则称 M 是一个匹配。
二分图的最大匹配:所有匹配中包含边数最多的一组匹配被称为二分图的最大匹配,其边数即为最大匹配数。
输入格式
第一行包含三个整数 n1、 n2 和 m。
接下来 m 行,每行包含两个整数 u 和 v,表示左半部点集中的点 u 和右半部点集中的点 v 之间存在一条边。
输出格式
输出一个整数,表示二分图的最大匹配数。
问题求解
匈牙利算法是由匈牙利数学家Edmonds于1965年提出,因而得名。匈牙利算法是基于Hall定理中充分性证明的思想,它是部图匹配最常见的算法,该算法的核心就是寻找增广路径,它是一种用增广路径求二分图最大匹配的算法。
恋爱大匹配:一对一匹配时,如果女方没有匹配过,直接A上去
否则看看她匹配的男生有没有其他女生的选择,有就A上去,并且让男生选择另外一个选择(递归)find(match[j])
#include <iostream>
#include<cstring>
using namespace std;
int h[510], ne[100010],e[100010];
int st[510];
int match[510];
int idx;
int n1, n2,m;
void add(int a, int b ){
e[idx] = b;
ne[idx] = h[a];
h[a] = idx++;
}
bool find(int a){
for(int j = h[a]; j!=-1; j = ne[j]){
int u = e[j];
if(st[u]==0){
st[u] =1;
if(match[u] ==0 || find(match[u])){
match[u] = a;
return true;
}
}
}
return false;
}
int main(){
memset(h, -1, sizeof(h));
cin>>n1>>n2>>m;
int a,b;
for(int i =0; i<m; i++){
cin>>a>>b;
add(a,b);
}
int res =0;
for(int i =1; i<=n1; i++){
memset(st, 0 ,sizeof(st));
if(find(i)){res++;}
}
cout<<res;
}