HDU 2048 2049 2068 错排题

20 篇文章 0 订阅

2048 神、上帝以及老天爷

Problem Description
 HDU 2006'10 ACM contest的颁奖晚会隆重开始了!
为了活跃气氛,组织者举行了一个别开生面、奖品丰厚的抽奖活动,这个活动的具体要求是这样的:

首先,所有参加晚会的人员都将一张写有自己名字的字条放入抽奖箱中;
然后,待所有字条加入完毕,每人从箱中取一个字条;
最后,如果取得的字条上写的就是自己的名字,那么“恭喜你,中奖了!”

大家可以想象一下当时的气氛之热烈,毕竟中奖者的奖品是大家梦寐以求的Twins签名照呀!不过,正如所有试图设计的喜剧往往以悲剧结尾,这次抽奖活动最后竟然没有一个人中奖!

我的神、上帝以及老天爷呀,怎么会这样呢?

不过,先不要激动,现在问题来了,你能计算一下发生这种情况的概率吗?

不会算?难道你也想以悲剧结尾?!

Input
 输入数据的第一行是一个整数C,表示测试实例的个数,然后是C 行数据,每行包含一个整数n(1<n<=20),表示参加抽奖的人数。

Output
 对于每个测试实例,请输出发生这种情况的百分比,每个实例的输出占一行, 结果保留两位小数(四舍五入),具体格式请参照sample output。

Sample Input
 1
2

Sample Output
 50.00%

Algorithm Analyse
 神、上帝以及老天爷啊!就为了张Twins的签名照就这么大费周章的。唉~现在的年轻人啊。

N张票的所有排列可能自然是Ann = N!种排列方式
现在的问题就是N张票的错排方式有几种。
首先我们考虑,如果前面N-1个人拿的都不是自己的票,即前N-1个人满足错排,现在又来了一个人,他手里拿的是自己的票。
只要他把自己的票与其他N-1个人中的任意一个交换,就可以满足N个人的错排。这时有N-1种方法。

另外,我们考虑,如果前N-1个人不满足错排,而第N个人把自己的票与其中一个人交换后恰好满足错排。
这种情况发生在原先N-1人中,N-2个人满足错排,有且仅有一个人拿的是自己的票,而第N个人恰好与他做了交换,这时候就满足了错排。
因为前N-1个人中,每个人都有机会拿着自己的票。所以有N-1种交换的可能。

综上所述:f(n) = (i - 1) * [f(n - 1) + f(n - 2)] 


#include <math.h>

#include <stdio.h>


int main(void)
{
    int i, n;
    __int64 d[21][2] = {{1,0},{1,0},{2,1},{6,2}};


    for (i = 4; i < 21; i++)
    {
        d[i][0] = i * d[i-1][0];
        d[i][1] = (i - 1) * (d[i-1][1] + d[i-2][1]);
    }
    scanf("%d", &n);
    while (n-- && scanf("%d", &i))
        printf("%.2f%%\n", d[i][1]*100.0/d[i][0]);


    return 0;
}


2049 不容易系列之(4)——考新郎

Problem Description
 国庆期间,省城HZ刚刚举行了一场盛大的集体婚礼,为了使婚礼进行的丰富一些,司仪临时想出了有一个有意思的节目,叫做"考新郎",具体的操作是这样的:
首先,给每位新娘打扮得几乎一模一样,并盖上大大的红盖头随机坐成一排;
然后,让各位新郎寻找自己的新娘.每人只准找一个,并且不允许多人找一个.
最后,揭开盖头,如果找错了对象就要当众跪搓衣板...

看来做新郎也不是容易的事情...

假设一共有N对新婚夫妇,其中有M个新郎找错了新娘,求发生这种情况一共有多少种可能.

Input
 输入数据的第一行是一个整数C,表示测试实例的个数,然后是C行数据,每行包含两个整数N和M(1<M<=N<=20)。

Output
 对于每个测试实例,请输出一共有多少种发生这种情况的可能,每个实例的输出占一行。

Sample Input
 2
2 2
3 2

Sample Output
 1
3

依然是错排问题,方法见2048题。但这里还要从N个新郎中找出M个冤大头。HOHO~
方法就不用多讲了,就是求组合Cmn

先求出组合数在乘以错排结果。不然做乘法运算可能会在中间过程中就造成数据溢出。

而且组合的规律告诉我们,这里做除法运算不会造成精度丢失情况。


#include <stdio.h>


int main(void)
{
    int i, m, n;
    __int64 a[21][2] = {{1,0},{1,0},{2,1},{6,2}};


    for (i = 4; i < 21; i++)
    {
        a[i][0] = i * a[i-1][0];
        a[i][1] = (i-1) * (a[i-1][1] + a[i-2][1]);
    }
    scanf("%d", &i);
    while (i-- && scanf("%d%d", &n, &m))
        printf("%I64d\n", a[n][0]/a[m][0]/a[n-m][0]*a[m][1]);


    return 0;
}



2068 RPG的错排

Problem Description
 今年暑假杭电ACM集训队第一次组成女生队,其中有一队叫RPG,但做为集训队成员之一的野骆驼竟然不知道RPG三个人具体是谁谁。RPG给他机会让他猜猜,第一次猜:R是公主,P是草儿,G是月野兔;第二次猜:R是草儿,P是月野兔,G是公主;第三次猜:R是草儿,P是公主,G是月野兔;......可怜的野骆驼第六次终于把RPG分清楚了。由于RPG的带动,做ACM的女生越来越多,我们的野骆驼想都知道她们,可现在有N多人,他要猜的次数可就多了,为了不为难野骆驼,女生们只要求他答对一半或以上就算过关,请问有多少组答案能使他顺利过关。

Input
 输入的数据里有多个case,每个case包括一个n,代表有几个女生,(n<=25), n = 0输入结束。

Output
 给出有多少组答案能使他顺利过关。

Sample Input
 1
2
0

Sample Output
 1
1

Algorithm Analyse
 和2048、2049题一样,都属于错排题。
错排公式:f(n) = (i - 1) * [f(n-1) + f(n-2)]。
具体的推导请查看2048。
当然,本题目还涉及到组合,排错的i个人要从n个人中选出,并且要累加i从 0 -> n/2的所有错排个数。 

数据范围比较大,需要用double型数据。




#include <stdio.h>


int main(void)
{
    int i, n;
    double s;
    double d[26][2] = {{1,1},{1,0},{2,1},{6,2}};
    
    for (i = 4; i < 26; i++)
    {
        d[i][0] = i * d[i-1][0];
        d[i][1] = (i - 1) * (d[i-1][1] + d[i-2][1]);
    }
    while (scanf("%d", &n), n)
    {
        for (s = 0, i = n/2; i >= 0; i--)
            s += 1.0*d[n][0]/d[i][0]/d[n-i][0]*d[i][1];
        printf("%.lf\n", s);
    }
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值