2048 神、上帝以及老天爷
HDU 2006'10 ACM contest的颁奖晚会隆重开始了! 为了活跃气氛,组织者举行了一个别开生面、奖品丰厚的抽奖活动,这个活动的具体要求是这样的: 首先,所有参加晚会的人员都将一张写有自己名字的字条放入抽奖箱中; 大家可以想象一下当时的气氛之热烈,毕竟中奖者的奖品是大家梦寐以求的Twins签名照呀!不过,正如所有试图设计的喜剧往往以悲剧结尾,这次抽奖活动最后竟然没有一个人中奖! 我的神、上帝以及老天爷呀,怎么会这样呢? 不过,先不要激动,现在问题来了,你能计算一下发生这种情况的概率吗? 不会算?难道你也想以悲剧结尾?! |
输入数据的第一行是一个整数C,表示测试实例的个数,然后是C 行数据,每行包含一个整数n(1<n<=20),表示参加抽奖的人数。 |
对于每个测试实例,请输出发生这种情况的百分比,每个实例的输出占一行, 结果保留两位小数(四舍五入),具体格式请参照sample output。 |
1 2 |
50.00% |
神、上帝以及老天爷啊!就为了张Twins的签名照就这么大费周章的。唉~现在的年轻人啊。 N张票的所有排列可能自然是Ann = N!种排列方式 另外,我们考虑,如果前N-1个人不满足错排,而第N个人把自己的票与其中一个人交换后恰好满足错排。 综上所述:f(n) = (i - 1) * [f(n - 1) + f(n - 2)] |
#include <math.h>
#include <stdio.h>int main(void)
{
int i, n;
__int64 d[21][2] = {{1,0},{1,0},{2,1},{6,2}};
for (i = 4; i < 21; i++)
{
d[i][0] = i * d[i-1][0];
d[i][1] = (i - 1) * (d[i-1][1] + d[i-2][1]);
}
scanf("%d", &n);
while (n-- && scanf("%d", &i))
printf("%.2f%%\n", d[i][1]*100.0/d[i][0]);
return 0;
}
2049 不容易系列之(4)——考新郎
国庆期间,省城HZ刚刚举行了一场盛大的集体婚礼,为了使婚礼进行的丰富一些,司仪临时想出了有一个有意思的节目,叫做"考新郎",具体的操作是这样的: 首先,给每位新娘打扮得几乎一模一样,并盖上大大的红盖头随机坐成一排; 然后,让各位新郎寻找自己的新娘.每人只准找一个,并且不允许多人找一个. 最后,揭开盖头,如果找错了对象就要当众跪搓衣板... 看来做新郎也不是容易的事情... 假设一共有N对新婚夫妇,其中有M个新郎找错了新娘,求发生这种情况一共有多少种可能. |
输入数据的第一行是一个整数C,表示测试实例的个数,然后是C行数据,每行包含两个整数N和M(1<M<=N<=20)。 |
对于每个测试实例,请输出一共有多少种发生这种情况的可能,每个实例的输出占一行。 |
2 2 2 3 2 |
1 3 |
方法就不用多讲了,就是求组合Cmn
先求出组合数在乘以错排结果。不然做乘法运算可能会在中间过程中就造成数据溢出。
而且组合的规律告诉我们,这里做除法运算不会造成精度丢失情况。
#include <stdio.h>
int main(void)
{
int i, m, n;
__int64 a[21][2] = {{1,0},{1,0},{2,1},{6,2}};
for (i = 4; i < 21; i++)
{
a[i][0] = i * a[i-1][0];
a[i][1] = (i-1) * (a[i-1][1] + a[i-2][1]);
}
scanf("%d", &i);
while (i-- && scanf("%d%d", &n, &m))
printf("%I64d\n", a[n][0]/a[m][0]/a[n-m][0]*a[m][1]);
return 0;
}
2068 RPG的错排
今年暑假杭电ACM集训队第一次组成女生队,其中有一队叫RPG,但做为集训队成员之一的野骆驼竟然不知道RPG三个人具体是谁谁。RPG给他机会让他猜猜,第一次猜:R是公主,P是草儿,G是月野兔;第二次猜:R是草儿,P是月野兔,G是公主;第三次猜:R是草儿,P是公主,G是月野兔;......可怜的野骆驼第六次终于把RPG分清楚了。由于RPG的带动,做ACM的女生越来越多,我们的野骆驼想都知道她们,可现在有N多人,他要猜的次数可就多了,为了不为难野骆驼,女生们只要求他答对一半或以上就算过关,请问有多少组答案能使他顺利过关。 |
输入的数据里有多个case,每个case包括一个n,代表有几个女生,(n<=25), n = 0输入结束。 |
给出有多少组答案能使他顺利过关。 |
1 2 0 |
1 1 |
和2048、2049题一样,都属于错排题。 错排公式:f(n) = (i - 1) * [f(n-1) + f(n-2)]。 具体的推导请查看2048。 当然,本题目还涉及到组合,排错的i个人要从n个人中选出,并且要累加i从 0 -> n/2的所有错排个数。 |
数据范围比较大,需要用double型数据。
#include <stdio.h>
int main(void)
{
int i, n;
double s;
double d[26][2] = {{1,1},{1,0},{2,1},{6,2}};
for (i = 4; i < 26; i++)
{
d[i][0] = i * d[i-1][0];
d[i][1] = (i - 1) * (d[i-1][1] + d[i-2][1]);
}
while (scanf("%d", &n), n)
{
for (s = 0, i = n/2; i >= 0; i--)
s += 1.0*d[n][0]/d[i][0]/d[n-i][0]*d[i][1];
printf("%.lf\n", s);
}
}