最小割集◎Stoer-Wagner算法
一个无向连通网络,去掉一个边集可以使其变成两个连通分量则这个边集就是割集;最小割集当然就权和最小的割集。
可以用最小切割最大流定理:
1.min=MAXINT,确定一个源点
2.枚举汇点
3.计算最大流,并确定当前源汇的最小割集,若比min小更新min
4.转到2直到枚举完毕
5.min即为所求输出min
不难看出复杂度很高:枚举汇点要O(n),最短增广路最大流算法求最大流是O((n^2)m)复杂度,在复杂网络中O(m)=O(n^2),算法总复杂度 就是O(n^5);哪怕采用最高标号预进流算法求最大流O((n^2)(m^0.5)),算法总复杂度也要O(n^4)
所以用网络流算法求解最小割集复杂度不会低于O(n^4)。
---------
prim算法不仅仅可以求最小生成树,也可以求“最大生成树”。最小割集Stoer-Wagner算法就是典型的应用实例。
求解最小割集普遍采用Stoer-Wagner算法,不提供此算法证明和代码,只提供算法思路:
1.min=MAXINT,固定一个顶点P
2.从点P用类似prim的s算法扩展出“最大生成树”,记录最后扩展的顶点和最后扩展的边
3.计算最后扩展到的顶点的切割值(即与此顶点相连的所有边权和),若比min小更新min
4.合并最后扩展的那条边的两个端点为一个顶点(当然他们的边也要合并,这个好理解吧?)
5.转到2,合并N-1次后结束
6.min即为所求,输出min
prim本身复杂度是O(n^2),合并n-1次,算法复杂度即为O(n^3)
如果在prim中加堆优化,复杂度会降为O((n^2)logn)
一个无向连通网络,去掉一个边集可以使其变成两个连通分量则这个边集就是割集;最小割集当然就权和最小的割集。
可以用最小切割最大流定理:
1.min=MAXINT,确定一个源点
2.枚举汇点
3.计算最大流,并确定当前源汇的最小割集,若比min小更新min
4.转到2直到枚举完毕
5.min即为所求输出min
不难看出复杂度很高:枚举汇点要O(n),最短增广路最大流算法求最大流是O((n^2)m)复杂度,在复杂网络中O(m)=O(n^2),算法总复杂度 就是O(n^5);哪怕采用最高标号预进流算法求最大流O((n^2)(m^0.5)),算法总复杂度也要O(n^4)
所以用网络流算法求解最小割集复杂度不会低于O(n^4)。
---------
prim算法不仅仅可以求最小生成树,也可以求“最大生成树”。最小割集Stoer-Wagner算法就是典型的应用实例。
求解最小割集普遍采用Stoer-Wagner算法,不提供此算法证明和代码,只提供算法思路:
1.min=MAXINT,固定一个顶点P
2.从点P用类似prim的s算法扩展出“最大生成树”,记录最后扩展的顶点和最后扩展的边
3.计算最后扩展到的顶点的切割值(即与此顶点相连的所有边权和),若比min小更新min
4.合并最后扩展的那条边的两个端点为一个顶点(当然他们的边也要合并,这个好理解吧?)
5.转到2,合并N-1次后结束
6.min即为所求,输出min
prim本身复杂度是O(n^2),合并n-1次,算法复杂度即为O(n^3)
如果在prim中加堆优化,复杂度会降为O((n^2)logn)
#include <iostream>
using namespace std;
int mat[600][600];
int res;
//Stoer-Wagner算法,加了自己看得懂的备注
//无向图全局最小割,用求prim类似方法o(n^3),学习了一个下午……
//一开始用枚举源点汇点的最大流求解,复杂度o(n^5) 超时
void Mincut(int n) {
int node[600], dist[600];
bool visit[600];
int i, prev, maxj, j, k;
for (i = 0; i < n; i++)
node[i] = i;
while (n > 1) {
int maxj = 1;
for (i = 1; i < n; i++) { //初始化到已圈集合的割大小
dist[node[i]] = mat[node[0]][node[i]];
if (dist[node[i]] > dist[node[maxj]])
maxj = i;
}
prev = 0;
memset(visit, false, sizeof (visit));
visit[node[0]] = true;
for (i = 1; i < n; i++) {
if (i == n - 1) { //只剩最后一个没加入集合的点,更新最小割
res = min(res, dist[node[maxj]]);
for (k = 0; k < n; k++) //合并最后一个点以及推出它的集合中的点
mat[node[k]][node[prev]] = (mat[node[prev]][node[k]] += mat[node[k]][node[maxj]]);
node[maxj] = node[--n]; //缩点后的图
}
visit[node[maxj]] = true;
prev = maxj;
maxj = -1;
for (j = 1; j < n; j++)
if (!visit[node[j]]) { //将上次求的maxj加入集合,合并与它相邻的边到割集
dist[node[j]] += mat[node[prev]][node[j]];
if (maxj == -1 || dist[node[maxj]] < dist[node[j]])
maxj = j;
}
}
}
return;
}
int main() {
int n, m, a, b, v;
while (scanf("%d%d", &n, &m) != EOF) {
res = (1 << 29);
memset(mat, 0, sizeof (mat));
while (m--) {
scanf("%d%d%d", &a, &b, &v);
mat[a][b] += v;
mat[b][a] += v;
}
Mincut(n);
printf("%d\n", res);
}
}