无向图的最小割问题

本文介绍了如何利用Stoer-Wagner算法解决无向图的最小割问题,通过逐步解释算法流程并提供代码示例,帮助理解最小割的计算过程。算法复杂度为O(n^3),适用于寻找图中权值和最小的割集。
摘要由CSDN通过智能技术生成

再不写博客我就要忘光了= =

一个无向连通网络,去掉一个边集可以使其变成两个连通分量则这个边集就是割集。而最小割集是其中权值和最小的割集。

网络流

说起最小割,最为朴素的算法大约是从网络流入手,枚举汇点,比较所得到的最大流(最大流=最小割),其中最小的就是我们所求的答案。
但是显然这样算是非常非常慢的,进行了很多次重复而毫无意义的计算。即便可以求出正确答案,但效率低下等于没求,复杂度不小于O(n^4)。

Stoer-Wagner

首先抛去算法的正确性时间复杂度等等一切东西不谈,以下是整个算法的过程:

(该过程中无向图点的标号为0~n-1)

0.
id[]:点的编号,即大点
dis[] : 大点离其他大点的距离
g[][] : 无向图上两点之间的距离

1.对于每个点进行标号(id[]),即id[i]=j。我们将标号相同的点视作“一体的”,即一个包含了若干点的“大点”。

2.找到对于0号大点(id[0])距离最远的大点maxp(id[maxp])。第一次进行2操作的时候,这个距离dis[ id[i] ] = g[ id[0] ][ id[i] ]。我们可以认为,这个时候的大点maxp与大点0号进行了“链接”,是一体的,但不是同一个大点。

3.更新所有非0号且未做过maxp的大点的dis[],将他们的dis[i]+=g[id[i]][id[maxp]]; 因为此时的maxp与0号大点是一体的,因此从0号大点到达 该大点的距离也需要加上 对于id[maxp] 的距离。

4.找到dis[id[i]]最为大的点,设为新的maxp,上一个maxp则用prev存起来。如果该操作后,所有点都成为过maxp,进入步骤5,否则,重复步骤3.

5.用当前的dis[id[maxp]]更新答案。显然,dis[id[maxp]]是与该点相连的所有的边权和。这是因为对于某个dis[i]的更新,我们只会用g[ id[ ] ][ id[i] ]来更新,当两个点没有直接相连的边时,g值为0,不影响。

6.合并当前的maxp与prev(即上一个maxp),注意这里是合并,而不是“链接”,因此我们对与id[prev]有关的边的权值,加上该边起点到id[maxp]的距离。该操作结束后,删除maxp这个大点,即用最后一个结点覆盖它本身。
(id[maxp]&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值