独立开发周记 #51:1 月总结

本文记录了一位独立开发者在2024年1月的成就,包括节省开支、应用下载量分析(AppStore下降,GooglePlay上升)、收入增长、处理应用崩溃问题(尝试FirebaseCrashlytics和Bugly),以及使用AI创作宣传海报和红包封面的经历。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2024,第五周,0129-0204

2024 第一个月结束了,我达成了两个成就:

  1. 没点一次外卖
  2. 没去喝一次瑞幸和库迪

经济下行,开源节流,这一个月怎么也能节省一千多块吧。

1月数据总结

下载量(只统计极简时钟)

  • App Store,下降2.26%
  • Google Play,增长29.77%
  • 国内安卓市场,下降32.08%

因为国内安卓市场去年 12 月最后两天出现了暴涨的下载量,所以和 12 月相比是下降了许多,但是和正常的 11 月相比较的话,其实还是增长了一丢丢。

收入

  • App Store,增长25%
  • Google Play,增长17.86%
  • Admob,增长8.96%
  • 国内安卓市场,下降17.85%

GP 和 Admob 的收入都是历史新高,相信随着新版本的极简时钟全量发布后,一定会更高。

极简日记

崩溃收集

这一周和上周一样,都在攻关一个用户反馈的崩溃 bug。本来以为都修复了,但是用户反馈还是会闪退,而 Xcode 还没收到用户的崩溃信息,没办法只好接入第三方崩溃统计 SDK 了。

先是接入了 Firebase 的 Crashlytics,但是这东西必须魔法上网才能上传崩溃信息。

然后尝试了Bugly,不知道是我集成的方式是不是有问题,控制台里始终收不到崩溃信息,于是就放弃了。另外说一句,Bugly 的文档和集成方式太落后了,集成方式只有 pod 和手动,连 SPM 都没有,另外文档里的代码示例只有一个 Swift 的例子,其余都是 Objective-C。看了几个国内其他的 SDK 的文档,大多数还都是用 Objective-C。

宣传海报

打算春节期间进行一波终身会员的促销,得先做个宣传海报。

正值即将到来的是龙年春节,于是我想做个可爱的中国龙幼崽放鞭炮的画面,但是DALL·E 3对于「中国龙」理解得不太好,试了十多个还都是西方龙的样子。

后来我转变了思路,画一个戴中国龙头饰的小孩子在放鞭炮,这样子的效果就好很多了,也更有年味了。

但是,DALL·E 3 总在图像里加入蜡烛和文字,即使我禁止也不行,最后挑了一个最适合做海报的图片,又通过「搞定」这个工具在线编辑了一下,制作出了下面这个宣传海报。

红包封面

公众号后台收到消息通知,赠给了我 6000 定制红包封面的额度,于是花了一句话的工夫(DALL·E 3)制作了一款红包封面。

但是这个红包封面仅限于公众号文章里发放,不能通过微信消息来分享,于是就随便发了一篇一句话的公众号文章,把这个红包封面分享了出去。

接着,这篇文章的阅读数就开始惊人的增长。一个小时就突破了 1000 阅读,一个晚上就把 4000 个红包封面都领完了,阅读数比之前所有的周记都要高很多很多……

所以我把最后的 2000 个留在这篇周记里,分享给大家,喜欢你能喜欢。

独立开发周记 #51:1 月总结

本文由博客一文多发平台 OpenWrite 发布!

内容概要:本文档《opencv高频面试题.docx》涵盖了OpenCV的基础概念、图像处理操作、特征提取与匹配、目标检测与机器学习、实际编程题、性能优化以及进阶问题。首先介绍了OpenCV作为开源计算机视觉库,支持图像/视频处理、目标检测、机器学习等领域,应用于安防、自动驾驶、医学影像、AR/VR等方面。接着详细讲述了图像的存储格式(如Mat类)、通道的概念及其转换方法。在图像处理部分,讲解了图像灰度化、二值化、边缘检测等技术。特征提取方面,对比了Harris和Shi-Tomasi角点检测算法,以及SIFT、SURF、ORB的特征提取原理和优缺点。目标检测部分介绍了Haar级联检测原理,并阐述了如何调用深度学习模型进行目标检测。文档还提供了几个实际编程题示例,如读取并显示图像、图像旋转、绘制矩形框并保存等。最后,探讨了性能优化的方法,如使用cv2.UMat(GPU加速)、减少循环等,以及相机标定、光流等进阶问题。 适合人群:对计算机视觉有一定兴趣,具备一定编程基础的学习者或从业者。 使用场景及目标:①帮助学习者掌握OpenCV的基本概念和技术;②为面试准备提供参考;③为实际项目开发提供技术指导。 阅读建议:由于内容涵盖广泛,建议读者根据自身需求有选择地深入学习相关章节,并结合实际编程练习加深理解。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值