寂静夜空35
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
43、学术研究前沿:多领域模型与机制创新探讨
本文综述了多个学术研究前沿领域,探讨了项目选择、价格预警机制、交通流模型、诚实广义线性模型、算法公平性、尸体器官分配、最小成本生成树博弈、个性化商品组合优化以及在线匹配市场的最新模型与机制。这些研究为解决经济、社会和交通等领域的复杂问题提供了创新思路和方法,具有广泛的应用前景。原创 2025-08-30 09:59:09 · 53 阅读 · 0 评论 -
42、博弈与决策领域的研究进展
本博文综述了博弈与决策领域的多项研究进展,涵盖了扩展式博弈中的收益操纵、市场细分与定价、并行竞赛设计、产品退役与客户选择的收益管理、招聘流程中的订单选择、肾脏交换中的策略性取消、最大纳什福利问题的可处理片段,以及部分可验证信息下的项目选择问题。研究内容涉及理论建模、算法设计与复杂性分析,并通过案例或实验验证策略的有效性,为博弈论、机制设计与优化决策提供了坚实的理论支持与实际应用价值。原创 2025-08-29 09:03:57 · 73 阅读 · 0 评论 -
41、胜者确定的半随机复杂度分析
本文聚焦于多种投票规则下胜者确定问题的半随机复杂度分析,包括道奇森规则、凯梅尼规则、杨格规则、钱伯林-柯朗规则和门罗规则等。研究揭示了在特定模型下不同规则的复杂度差异,例如道奇森规则的半随机易处理性以及凯梅尼规则的平滑难度。通过理论分析和算法构造,文章为未来投票规则的复杂度研究提供了理论基础,并探讨了其在实际应用中的意义。原创 2025-08-28 12:56:02 · 60 阅读 · 0 评论 -
40、胜者确定的半随机复杂度分析
本文围绕半随机环境下的胜者确定问题展开,深入分析了Dodgson规则、Young规则、Kemeny规则等投票机制的计算复杂度。通过引入假设条件和部分备选项随机化模型,揭示了在不同规则下胜者确定问题的难易程度,并讨论了其在推荐系统和信息检索等实际应用中的意义。研究结果表明,尽管部分规则在半随机环境下仍具有较高的复杂度,但在特定条件下存在多项式时间算法的可能性。这些结论为未来在该领域的进一步研究和实际应用提供了理论支持和指导方向。原创 2025-08-27 16:49:19 · 55 阅读 · 0 评论 -
39、受限域下核心稳定委员会与胜者确定的半随机复杂度分析
本文研究了在两类半随机模型下经典投票规则胜者确定的计算复杂度。聚焦于Kemeny规则、Dodgson规则和Young规则,分析了其在受限域下的复杂性表现。结果表明,在第一类模型中,DodgsonScore和YoungScore在计算上仍然困难;而在第二类模型(α-公正文化)下,KemenyScore和DodgsonScore表现出不同的复杂度特性。这些发现不仅丰富了计算社会选择的理论基础,也为实际群体决策提供了重要参考。原创 2025-08-26 12:54:13 · 37 阅读 · 0 评论 -
38、受限域下的核心稳定委员会
本文探讨了受限域下的核心稳定委员会问题,介绍了选举模型中的递归单顶交叉偏好(r-STC)、选民区间偏好(VI)、候选人区间偏好(CI)和线性一致偏好(LC)等关键概念。通过CORECOMMITTEE算法(包括BESTREPRESENTATIVE和MEDIANRULE两个阶段),证明了在特定偏好下核心稳定委员会总是存在的,并可以在多项式时间内找到。文章还分析了不同偏好类型的核心性质、算法复杂度及实际应用,并讨论了未来的研究方向,为实际选举中的委员会选择提供了理论基础和实用算法。原创 2025-08-25 13:33:28 · 46 阅读 · 0 评论 -
37、受限域下的核心稳定委员会
本文探讨了在受限域条件下核心稳定委员会的存在性与算法设计。研究通过引入新的偏好域结构,证明了在特定受限域下核心稳定规则的存在性,并提出了一种通用的核心稳定算法。研究结果对理解选举中的比例性与投票规则设计具有重要意义。原创 2025-08-24 11:00:41 · 39 阅读 · 0 评论 -
36、参与式预算中核心稳定性审计与委员会选举相关研究
本博客围绕参与式预算和委员会选举中的核心稳定性问题展开研究,探讨了Lindahl可定价性、子核心与弱可定价性等关键概念,并通过线性规划方法对核心稳定性进行近似审计。研究分析了在不同偏好领域下核心稳定委员会的存在性与可计算性,提出了子核心这一弱化公平概念,并展示了其允许近似审计的特性。此外,博客还讨论了核心稳定性审计的局限性,并展望了未来研究的方向,包括缩小审计差距、核心存在性问题以及扩展对其他公平概念的审计方法。原创 2025-08-23 16:15:37 · 31 阅读 · 0 评论 -
35、参与式预算中核心稳定性审计研究
本文围绕参与式预算中的核心稳定性审计问题展开深入研究,探讨了比例性、近似核心和审计公平性等相关概念。通过构建数学规划模型,研究了计算核心稳定性因子 $θ_c$ 的复杂性,证明了其在批准选举设置下的 NP-难和 APX-难性质。同时,提出了一种基于线性规划松弛和舍入技术的对数近似方法,能够在多项式时间内以 $O(min(log m, log n))$ 因子近似 $θ_c$。研究还扩展到任意效用和候选规模的设置,并引入了林达尔可定价性和子核心等新概念,分析了它们与核心稳定性之间的关系。最终,文章为社会选择中的公原创 2025-08-22 11:34:08 · 40 阅读 · 0 评论 -
34、随机淘汰赛中的团队操纵与预算审计研究
本文研究了随机淘汰赛(RDM)中的团队操纵问题及Sybil攻击的防御机制,并探讨了参与式预算中的核心稳定性与审计问题。分析表明,RDM在3-团队操纵下具有较强的抵抗力,并具备渐近强Sybil-防攻击能力,但不满足更强版本的单调性。在预算审计方面,研究揭示了核心稳定性难以精确满足,提出了近似核心的概念及相应的审计方法,设计了基于线性规划的近似算法。此外,文章还探讨了Lindahl可定价性与核心之间的联系,为公平性评估提供了新视角。原创 2025-08-21 13:16:45 · 29 阅读 · 0 评论 -
33、随机淘汰赛制中 3 支队伍操纵的严格界限
本文深入研究了随机淘汰赛制(RDM)下3支队伍操纵比赛的严格界限,通过严谨的数学分析和证明得出操纵获胜概率的上限为31/60,并探讨了该结果对比赛规则设计的理论意义和实际应用。研究还回顾了2支队伍操纵的相关结论,并为未来研究更多队伍操纵及其他比赛规则下的操纵问题提供了方向。原创 2025-08-20 15:23:21 · 48 阅读 · 0 评论 -
32、公平覆盖与锦标赛规则中的纳什福利与操纵性分析
本文围绕公平覆盖与锦标赛规则中的公平性和效率问题展开研究。在公平覆盖方面,探讨了纳什社会福利最大化的算法与难度,揭示了1.092-近似算法的NP难性质;在锦标赛规则方面,分析了团队操纵性,重点研究了随机死亡赛的非操纵性及其对Sybil攻击的防御能力。文章还展望了未来的研究方向,包括拓展覆盖框架、设计启发式算法、应对更大规模的团队操纵以及跨领域的算法融合与应用。原创 2025-08-19 11:23:21 · 22 阅读 · 0 评论 -
31、公平高效覆盖的纳什福利保证
本博客围绕公平覆盖问题中纳什社会福利的最大化展开研究,提出了一种(18 + o(1))-近似算法`Alg`,通过迭代更新解决方案以实现社会福利的局部最优,并对其运行时间和近似比进行了理论分析。此外,博客还证明了该问题的APX难度,通过从最大k-覆盖问题进行归约,表明纳什社会福利最大化无法在1.092倍近似比内高效求解。研究为公平覆盖问题提供了有效的算法策略及理论支撑。原创 2025-08-18 16:08:53 · 28 阅读 · 0 评论 -
30、最佳公平分配与纳什福利保障
本文研究了在满足组合约束的前提下,如何通过最大化纳什社会福利(NSW)实现公平且高效的资源分配。针对覆盖问题,开发了一种多项式时间的 (18 + o(1))-近似算法,并通过计数论证证明了其近似保证。研究涵盖了背包约束、拟阵独立集和双边匹配等多种组合场景,同时探讨了算法的优势、局限性及未来研究方向。原创 2025-08-17 12:15:13 · 27 阅读 · 0 评论 -
29、公平份额分配的最佳解决方案
本文探讨了一种兼顾公平性和效率的资源分配算法,旨在为多个参与者公平地分配资源。通过使用线性规划和忠实实现引理,算法确保每个参与者在事前获得至少其比例份额,在事后获得至少其截断比例份额的一半,并满足Prop1公平性要求。文章还分析了算法的实现步骤、相关概念及未来研究方向,为实际资源分配问题提供了理论和实践支持。原创 2025-08-16 09:40:12 · 41 阅读 · 0 评论 -
28、兼顾公平与效率的资源分配方案
本文探讨了在资源分配问题中如何兼顾事前与事后公平性的随机分配方案。通过引入截断比例份额(TPS)的概念,提出了一种新的随机分配算法,能够在保证事前比例公平的同时,使每个参与者在事后获得至少一半的TPS,从而实现更合理的资源分配。文章还分析了公平性与效率性之间的内在冲突,并指出未来研究的方向。原创 2025-08-15 14:12:14 · 48 阅读 · 0 评论 -
27、相互依赖SOS估值的更好近似及公平分配机制研究
本文围绕相互依赖SOS估值的近似机制和公平分配问题展开研究。在SOS估值方面,通过一系列证明和机制设计,提出了能以一定近似比逼近最优福利的组合机制,其近似比为3.31543。同时探讨了Strong-SOS估值的定义及其局限性,指出SOS估值具有更强的稳健性和适用性。在公平分配领域,提出了一种确定性多项式时间算法,能够计算出满足事前比例性和事后至少每个代理获得最大最小份额一半的分配分布,并引入了更严格的截断比例份额(TPS)概念。研究成果在拍卖理论和资源分配领域具有重要的理论和实践意义。原创 2025-08-14 16:13:29 · 31 阅读 · 0 评论 -
26、实现相互依赖SOS估值的更好近似
本文研究了在信号上的次模性(SOS)条件下,如何设计实现更好近似比的真实拍卖机制。针对相互依赖估值(IDV)设置,提出了基于贡献的机制和推广的随机抽样拍卖机制,并通过凸组合的方式首次将近似比从4改进到3.315。同时,研究了SOS与强SOS的关系,表明它们在近似比方面具有等价性。这些成果为拍卖理论和机制设计提供了新的思路和方法。原创 2025-08-13 16:09:30 · 34 阅读 · 0 评论 -
25、双边贸易中第一最优贸易收益的改进近似
本文研究了双边贸易中第一最优贸易收益的近似问题,改进了现有机制的近似比率下界,将FB与RandOff的近似比率下界从1/8.23提升至1/3.15。同时,在买家价值分布满足单调风险率(MHR)条件下,精确确定了卖家定价机制对第一最优机制的近似比率为1/(e-1)。研究中利用Fubini-Tonelli定理和分位数函数等工具,提供了新的数学视角和分析方法。研究结果为双边贸易机制设计提供了理论支持,并为未来在更复杂市场环境下的研究指明了方向。原创 2025-08-12 13:38:50 · 32 阅读 · 0 评论 -
24、最优公正选择与双边贸易机制设计
本文探讨了图论中的公正顶点选择机制与双边贸易机制的设计与优化问题。针对图论中最大出度大于可选顶点数的情况,提出了非对称多数决加亚军且删除边的机制,该机制能在保证公正性的同时有效控制选择的顶点数量,并提供最小加法保证。在双边贸易机制方面,分析了几种常见机制(如固定价格机制、卖家定价机制、买家定价机制和随机报价机制)的特点和适用场景,讨论了它们在不同市场环境下的性能表现,并提出了优化方向。研究强调了在复杂市场和图论问题中,机制设计需要在公平性、效率和激励相容性之间进行权衡。原创 2025-08-11 12:18:41 · 36 阅读 · 0 评论 -
23、图选择机制的最优公平对应研究
本博文研究了图选择机制的公平性和可加性,探讨了在不同出度约束下选择顶点的机制设计问题。重点介绍了带亚军的多数机制及其非对称推广,并分析了它们在公平性和可加性方面的性质。通过构造具体的机制和证明相关定理,得出了在特定条件下最优的机制设计方法。同时,还证明了某些情况下无法超越当前的可加性保证,展示了机制设计的极限。这些理论结果为图论中的选择问题提供了坚实的理论基础,并具有实际应用价值。原创 2025-08-10 14:46:53 · 47 阅读 · 0 评论 -
22、云计算与图顶点选择中的资源分配机制
本博文探讨了云计算中的多资源分配机制与有向图中顶点选择的公正机制。在云计算部分,重点分析了DRF和UNB机制在满足SI、EF、PO和SP属性下的公平比率和效率表现,指出UNB机制在多项式时间内实现与DRF相同属性,并在特定条件下表现更优。在图顶点选择部分,研究了不同出度限制下如何实现公正选择,并提出了选择顶点数量与质量之间的权衡策略。两种机制的研究都强调了公平、效率和合理决策的重要性,并为未来优化资源分配和图选择机制提供了理论支持和实践方向。原创 2025-08-09 09:59:11 · 29 阅读 · 0 评论 -
21、云计算中公平高效的多资源分配策略解析
本文探讨了云计算中多资源公平高效分配的策略,重点分析了DRF、UNB、BAL和BAL*四种机制在不同场景下的性能表现。通过理论分析和实验评估,揭示了它们在社会福利和利用率方面的优劣,并提出了机制选择和组合策略,为多类型资源场景下的资源分配提供了思路和方向。原创 2025-08-08 14:11:19 · 40 阅读 · 0 评论 -
20、从单次捆绑销售观测构建需求曲线与云计算多资源公平高效分配
本博文探讨了两个关键领域的研究:从单次捆绑销售观测构建需求曲线,以及云计算多资源的公平高效分配。第一部分介绍了如何通过观察商品在打折捆绑销售中的频率,结合迭代算法匹配矩,构建需求曲线,并分析了其在识别弹性商品和辅助管理决策方面的应用。第二部分聚焦于云计算中的资源分配问题,提出新的衡量标准——公平比,并设计了比传统DRF机制更优的新机制UNB、BAL和BAL∗。这些研究为数据有限条件下的商品需求分析和多资源分配中的效率与公平平衡提供了新的思路和方法,具有重要的实践和研究价值。原创 2025-08-07 11:48:01 · 34 阅读 · 0 评论 -
19、从捆绑销售的单次观察构建需求曲线
本文介绍了如何从捆绑销售的单次观察中构建需求曲线,并通过迭代拟合算法求解商品的价格弹性。文章详细阐述了算法的设计原理、理论正确性以及在数值实验中的表现,同时通过一家拉丁美洲在线零售商的实际销售数据验证了模型的主要见解。结果表明,捆绑销售情况与商品价格弹性之间存在密切关系,这对企业制定价格策略和预测销售具有重要参考价值。原创 2025-08-06 10:20:47 · 31 阅读 · 0 评论 -
18、从捆绑销售的单一观察构建需求曲线
本文探讨了一种从单一观察下的捆绑销售数据构建商品需求曲线的新方法。通过拟合多商品估值模型,文章展示了如何在缺乏价格变化或额外协变量的情况下,利用捆绑销售信息推断商品需求随价格变化的趋势。核心见解表明,若某商品在不与另一商品捆绑时被频繁购买,则后者的需求曲线在当前价格附近较平缓,反之亦然。该方法在在线零售商的实证数据中得到了验证,并能够初步将商品划分为弹性和非弹性两类。尽管存在模型假设和数据局限性,该方法为企业在缺乏传统需求学习手段时提供了有价值的定价参考。原创 2025-08-05 11:40:04 · 57 阅读 · 0 评论 -
17、实证博弈论分析中对扩展式结构的利用
本文研究了在实证博弈论分析(EGTA)中利用扩展式博弈的树结构对收益估计和策略空间探索的影响。通过比较两种方法TE-EGTA和NF-EGTA,作者提出了TE-EGTA在收益估计方面具有更高的准确性,并且能够更快地收敛到低误差的结果。实验表明,TE-PSRO在迭代探索策略空间和微调实证博弈模型方面表现更优,即使在模型中包含部分树结构也能显著提高收敛速度和解的质量。研究为在EGTA中更有效地利用扩展式结构提供了理论和实验依据。原创 2025-08-04 16:22:57 · 61 阅读 · 0 评论 -
16、利用扩展形式结构进行实证博弈论分析
本文探讨了利用扩展形式结构进行实证博弈论分析(TE-EGTA)的方法,对比了其与传统的正常形式实证博弈论分析(NF-EGTA)在博弈模型估计、数据利用及策略管理上的差异。通过引入博弈树结构,TE-EGTA能够更准确地估计收益,并在复杂的博弈场景中提供更优的解决方案。此外,文章还介绍了如何将扩展形式结构应用于PSRO框架,以及未来TE-EGTA在博弈论与机器学习结合中的发展方向。原创 2025-08-03 16:51:16 · 54 阅读 · 0 评论 -
15、最优先知不等式与树结构在博弈分析中的应用
本文围绕先知不等式与树结构在博弈分析中的应用展开深入研究。首先探讨了稀疏样本设定下先知不等式的理论基础,通过构造实例和分析最优在线算法,得出了在线算法的竞争比下界。随后介绍了经验博弈论分析(EGTA)方法及其在扩展形式博弈(EFG)中的应用,重点阐述了Tree-Exploiting EGTA(TE-EGTA)方法,该方法通过利用博弈的树结构提高了对真实博弈的近似精度和均衡质量。最后提出了未来可能的研究方向,并总结了先知不等式和博弈分析在随机优化与复杂博弈中的应用价值。原创 2025-08-02 10:04:44 · 39 阅读 · 0 评论 -
14、少于一个样本的最优先知不等式研究
本文研究了有限信息下的单选择先知不等式问题,提出了一种基于$p$-稀疏样本访问框架的最大样本算法。该算法能够在每个分布仅提供有限样本甚至部分分布无样本的情况下,达到最优的竞争比$rac{p}{1 + p}$。通过理论分析证明了该算法在各种复杂情况下的性能保证,并对其时间与空间复杂度进行了评估。此外,文章还将该算法与已有方法进行了对比,展示了其在适用性和性能上的优势,并探讨了其在在线广告、资源分配和金融投资等实际场景中的潜在应用。未来的研究方向包括多选择场景扩展、更复杂样本模型的设计以及与其他优化算法的结合原创 2025-08-01 15:18:19 · 33 阅读 · 0 评论 -
13、排队网络稳定性与先知不等式研究
本研究探讨了排队网络的稳定性问题及先知不等式在样本不足情况下的表现。在排队网络稳定性方面,分析了集中式和分散式多层网络的稳定性条件,指出短视队列可能导致系统不稳定,并提出通过引入队列长度信息的新效用函数和优先级规则实现系统稳定。针对耐心排队模型,设计了计算队列成本的算法,并得出了系统在纳什均衡下稳定的条件。在先知不等式方面,提出了p-样本模型,推广了已有研究,并得出了在该模型下的最优先知不等式。研究为排队系统的稳定性分析和在线优化问题提供了新的理论支持和解决方案。原创 2025-07-31 16:31:36 · 33 阅读 · 0 评论 -
12、分散式排队网络的稳定性分析
本文探讨了分散式排队网络的稳定性分析,涵盖了数据包到达与处理机制、稳定性定义与相关定理、队列效用与无遗憾策略等基础概念。重点分析了在二分图排队系统和多层排队系统中,集中式与分散式策略下的稳定性条件。对于二分图模型,集中式策略的稳定性依赖于分数匹配矩阵的存在,而分散式无遗憾策略则需满足特定假设条件。多层排队系统则通过线性系统的可行性来判断集中式策略的稳定性,并在分散式策略中引入新的效用和服务优先级规则以提升系统稳定性。研究为排队网络的设计与优化提供了理论支持。原创 2025-07-30 14:20:56 · 22 阅读 · 0 评论 -
11、不同协同作用下的在线团队组建与分散式排队网络稳定性研究
本文探讨了在线团队组建和分散式排队网络稳定性两个关键问题,重点介绍了环分解修复算法及其在不同协同作用下的应用,该算法通过减少遗憾值来实现最优匹配。同时,研究了分散式排队网络的稳定性,扩展了原有模型以适应不完全二分图和有向无环图(DAG)等复杂网络结构。分析了在集中式和分散式策略下如何保持系统稳定性,并提出了适用于多层服务器网络的新服务优先级规则和队列效用函数。研究还总结了当前成果的共同特征,并指出了未来的研究方向,包括缩小边界差距、考虑噪声反馈、拓展团队规模和协同函数,以及进一步扩展模型以适应更复杂的应用场原创 2025-07-29 11:05:34 · 31 阅读 · 0 评论 -
10、在线团队组建中的不同协同效应分析
本文探讨了在线团队组建中不同协同效应(XOR、OR、AND)对团队成功的影响,并提出了相应的团队组建算法。通过分析每种协同效应下的最优匹配策略和遗憾下界,展示了如何在不同场景下选择合适算法以提高团队成功率并减少遗憾。原创 2025-07-28 13:03:48 · 32 阅读 · 0 评论 -
9、在线团队组建与广告分配相关研究
本文研究了在线团队组建问题,重点分析了在不同协同函数(如EQ、XOR、OR和AND)下如何最小化遗憾值。主体通过多轮匹配代理,根据团队表现调整分组,以逼近最优匹配。文中提出了针对不同协同函数的算法,并对算法的性能进行了理论分析和验证。此外,研究还拓展到在线广告分配等实际应用场景,为未来团队组建和资源分配问题提供了理论支持和解决方案。原创 2025-07-27 13:20:36 · 40 阅读 · 0 评论 -
8、在线广告分配算法:Allocation与函数V的解析
本文深入解析了一种用于在线广告分配问题的高效在线算法——Allocation算法及其核心组成部分函数V。通过详细分析Allocation算法的步骤、竞争力证明以及函数V的定义与性质,展示了该算法如何在广告资源分配中实现接近最优的性能。文章还探讨了函数V在不同区域的具体定义方式,并通过严格的数学证明,验证了其在算法竞争力分析中的关键作用。原创 2025-07-26 11:03:15 · 43 阅读 · 0 评论 -
7、在线广告分配与展示广告优化:剩余供应下的策略
本博文深入探讨了在线广告分配和展示广告优化在剩余供应情况下的策略。重点分析了二进制支持分布下的算法表现,证明了算法2在特定实例下的最优性。此外,还讨论了针对AdWords问题的Allocation算法,其竞争比在有界度图中达到最优,并随着应用场景的复杂性提升展现出更优的表现。博文还比较了不同算法的适用场景与性能,为实际应用提供了理论指导。原创 2025-07-25 11:46:17 · 26 阅读 · 0 评论 -
6、在线分配与展示广告优化:带剩余供应的解决方案
本文探讨了一种基于剩余供应的展示广告在线分配优化算法,旨在满足合同广告商需求的同时,充分利用广告交易所(AdEx)的机会,实现收益最大化。文章提出了一种快速简单的确定性算法,在广告商需求足够大的情况下能够获得最优的竞争比。该算法通过预计算阈值,结合广告交易所的出价分布和广告商满意度比率,实时做出分配决策。算法具有实时性、直观性以及对广告商需求的低依赖性等特点。文章还分析了特殊情况下的二进制广告交易所分布,并提出了扩展方向,如处理不同广告商的交付不足惩罚和随机算法的应用。通过最大-最小性能分析和线性规划方法,原创 2025-07-24 16:41:02 · 28 阅读 · 0 评论 -
5、区块链挖矿与广告资源分配策略解析
本博客深入探讨了区块链挖矿和广告资源分配中的策略选择与优化问题。在区块链挖矿部分,分析了矿池的策略类型(诚实挖矿、洞察挖矿)及其纳什均衡条件,并通过模拟验证了洞察挖矿策略的优势。在广告资源分配部分,研究了合同广告商与AdEx之间的收益优化问题,提出了一种具有最优竞争比的确定性算法,并探讨了供应因子对分配效果的影响。两者虽属不同领域,但在资源优化和策略均衡方面提供了重要的研究视角。原创 2025-07-23 15:16:41 · 46 阅读 · 0 评论 -
4、深入解析区块链中的洞察式挖矿策略
本文深入解析了区块链中的洞察式挖矿策略,介绍了区块链挖矿的基础知识,包括工作量证明(PoW)、矿池的工作机制以及自私挖矿的攻击原理。文章重点探讨了洞察式挖矿策略的设计与收益分析,通过马尔可夫奖励过程建模,揭示了该策略如何利用信息优势制衡自私挖矿,并在不同算力条件下实现更高的收益。此外,还分析了该策略对区块链系统安全性和公平性的重要意义,并展望了未来的研究方向,包括策略优化、多矿池竞争和与其他机制的结合。原创 2025-07-22 12:25:41 · 114 阅读 · 0 评论
分享