基于神经网络的房价预测,python数据分析房价预测

Python 与深度学习有哪些与建筑设计相接轨的可能性

关注这个问题快一周了,到目前来说还是没发现什么太大的惊喜。我感觉建筑设计界还是要学习一个,不要看到深度学习很火,就弄个大新闻,把这玩意往建筑设计上搬呀。其实深度学习这事儿到底怎么就能和建筑设计挂钩上?

如果单单指“深度学习”,那我的理解是套用了许多层的人工神经网络,这种技术能在建筑设计中扮演什么角色?我目前还真没发现直接用深度学习这种技术来辅助建筑设计的例子。

但是如果把题主提问的概念放宽松一点,变成“如何使用机器学习等算法来帮助建筑设计”,那我想还是有比较好的例子的。机器学习技术是用来让程序的运行性能随着输入量和时间的积累慢慢提高的一种技术。

例如你写了一个程序来预测一栋别墅的房价,这个程序的作用是能根据输入数据的[城市,街道,区位,面积,户型,..]等参数预测房价,为了提高程序预测的准确度,你需要先给程序喂一些已经有了估价结果的数据,程序学习一定的数据以后就能自己预测房价了。

那么,这种程序工作的方式和我们做建筑设计的工作流程有什么联系呢?我们做设计时,同样也是先调研和参考大量同类建筑的案例,积累到一定量以后,才能自己动手开始做设计。

了解了这一点,便可以设想一种利用机器学习来辅助建筑设计的思路:先让程序学习以前的建筑设计方案,然后程序就能自己去做设计了!

这篇2010年的论文Computer-generatedresidentialbuildinglayouts可以说就是以上思路的典范。

作者自称“使用数据驱动的方式设计了能自动创建视觉效果非常好的建筑布局的工具”,但我觉得论文的质量是远远超过了这样谦逊的描述,因为论文实现的思路极大程度借鉴了现实中建筑师开展设计工作的流程,而且用了贝叶斯网络这个非常漂亮的数学模型描述了一个建筑program在空间中的分布,而贝叶斯网络的训练数据全部来自真实的建筑师的设计方案。

个人认为用机器学习的思路去处理建筑布局问题相比于过去十年来ShapeGrammar的那种ProceduralModeling的思路来得更为正确。论文是怎么展开的呢?

首先,作者总结了前人工作,说明了以前基于穷举的算法都行不通,要在3D空间中去穷举这么复杂的空间分配问题就和猴子随意敲键盘得到一部莎士比亚作品的难度差不多。

接着作者又批判了上个世纪90年代Muller搞的ShapeGrammar那一套也不行,因为ShapeGrammar就是图形语法,我们知道,编程语言是是基于有限规则的语法集生成的,而建筑设计中这样的规则条款很难形式化描述,而且会倾向于让语法数量变得无穷多。

顺带一提,几十年前计算机科学家在攻克语音识别和机器翻译难题的时候,也是认为自然语言是完全基于有限的规则生成的,但后来才发现行不通,直到后来改成基于统计的方法进行研究后,才有了突破性进展。

那么shapegrammar不适合建筑设计的另外一点在于,建筑设计不是玩弄图形变换的游戏,每一个建筑空间都有基于功能,心理和效用等因素的考虑。

之前也有过用shapegrammar分析赖特壁炉式住宅的语法规则的论文,但是应用范围实在太窄。所以这条路是走不通的。

论文作者认为,做方案,一定要基于人的舒适和心理需求,习惯和社会关系等因素,将他们综合考量后才会有比较合理的结果。

例如,房间的形状最好是凸包而不要做成凹的,因为在采光上,家具摆放和视线上方正规整的形体都更优;建筑各个功能要形成开放性-私密性的梯度,因为这正反映了建筑被使用的方式。

为了研究更好的方法,作者去找到了一家建筑事务所的建筑师们向他们咨询职业建筑师的工作方式,得到了一个特别有用的结论:建筑师在初期和客户咨询后,在画平面的详图之前,一般都会用泡泡图来思考问题,而泡泡图则反映了一个建筑方案高度浓缩的信息,包括私密性,房间邻接关系,采光,业主喜好和文化习俗。

泡泡图在在建筑师看来是展开方案设计工作的第一步,在计算机科学家看来则是一种复杂的数据结构——图。

从使用者或者任务书弄出一张泡泡图是建筑师专业能力的体现,不管这种能力是基于长期训练的素养也好,还是临时起意的构想也好,我们知道这张图包含的信息量很大就对了。

那现在问题是,如何让计算机来生成这样一张泡泡图呢?这个时候就要轮到本回答开始的机器学习算法登场了。作者用来一个概率图模型——贝叶斯网络来描述建筑师做出来的泡泡图。

用人话说,就是用这玩意来描述建筑方案中每一个部分在空间中的概率分布。

好像说起来还是不太容易懂,但总之,我们知道了,这个模型可以让电脑知道对应一个成功的建筑方案,客厅、卧室和走廊等出现在某些位置的概率比出现在另外一些的位置的概率高,而概率高的位置正是合理的位置,这样就更容易生成好的方案。

针对贝叶斯网络的训练,作者搞了120套住宅建筑方案作为训练数据来喂给程序吃。现在程序总算是知道建筑方案的基本做法了,以下就是基于贝叶斯网络生成的泡泡图:搞定了泡泡图之后,怎么从这玩意生成建筑平面呢?

作者几经周折,最后用了Metropolis算法来搞定。具体的生成过程描述都在论文里面有写,我就不详细写了(其实是看不懂。

)再下一步是生成3D模型,作者比较自豪地说,他搞的这个算法真正实现了多层建筑方案的生成,而以前的基本只能生成单层的平面,作用有限。以下是一些成果:搞定了泡泡图之后,怎么从这玩意生成建筑平面呢?

作者几经周折,最后用了Metropolis算法来搞定。具体的生成过程描述都在论文里面有写,我就不详细写了(其实是看不懂。

)再下一步是生成3D模型,作者比较自豪地说,他搞的这个算法真正实现了多层建筑方案的生成,而以前的基本只能生成单层的平面,作用有限。

以下是一些成果:6张平面有几张是人做的方案,剩下的都是机器做的,大家可以猜一下机器做的是哪几个。答案论文里面有说。6张平面有几张是人做的方案,剩下的都是机器做的,大家可以猜一下机器做的是哪几个。

答案论文里面有说。最后是生成的3D模型,家具是手工布置的。还是颇具真实度呢!作者最后提到,准备把这个东西运用到更多的建筑类型上,例如办公楼等。如果这玩意儿成熟,再也不用担心建筑师不失业了,偶也!

最后我再说说对这玩意的评价吧。

最近几十年知识工作的自动化简直如火如荼地吹遍天南地北的各个行业,许多人都担心低端的劳动职位会不会被取代,例如驾驶汽车,快递,写新闻稿,翻译,速记等等等,这种担心真的不是毫无理由啊!

当优雅简洁的数学模型遇到计算机这个可以暴力计算的机器,结合起来就创造了一类又一类可成规模复制的智能机器,想想还是让人后怕的。

不过也不用太担心就是,建筑设计行业人所占的因素还是很大的,很多时候甲方找人做设计,都是看重设计师本身,出了专业能力外,沟通,人格魅力,背景,执照等的背书也是很重要的,不过未来这种建筑界持续了很久的行业模式会不会被颠覆就不得而知了。

另外,程序也需要吃许多训练数据才能提高自己的设计修养,在目前来看建筑设计的各位同行都把自己搜集的方案当成宝一样藏着,数据量的大而全也很难保证,不知道以后BIM的普及会不会让这方面得到改善。

谷歌人工智能写作项目:小发猫

如何利用Python预测股票价格

预测股票价格没有意义python神经网络得到最大值,python 神经元网络。单支股票价格,多股组合,大盘这些都可以使用神经网络来学习,02年就做过了,涨跌预测平均能达到54%到57%的准确率,但是只能定性,无法定量,因此,在扣除印花税之后无利可图。

纯粹使用股票交易数据来预测并保证总体获利不是程序能办到的,人也办不到。

目前世界上最先进的炒股机器也只能利用网络时差那微不可计的零点几秒在欧洲与美国证券间倒来倒去,那套系统研发费用数千万,硬件(主要是独立光缆)费用以亿计。

python做BP神经网络,进行数据预测,训练的输入和输出值都存在负数,为什么预测值永远为正数?

深度学习具体学什么?

深度学习具体都会学神经网络、BP反向传播算法、TensorFlow深度学习工具等。

而神经网络需要学习的有:从生物神经元到人工神经元激活函数Relu、Tanh、Sigmoid透过神经网络拓扑理解逻辑回归分类透过神经网络拓扑理解Softmax回归分类透过神经网络隐藏层理解升维降维剖析隐藏层激活函数必须是非线性的原因神经网络在sklearn模块中的使用水泥强度预测案例及绘制神经网络拓扑BP反向传播算法需要学习的有:BP反向传播目的链式求导法则BP反向传播推导不同激活函数在反向传播应用不同损失函数在反向传播应用Python实现神经网络实战案例TensorFlow深度学习工具设计到:TF安装(包含CUDA和cudnn安装)TF实现多元线性回归之解析解求解TF实现多元线性回归之梯度下降求解TF预测california房价案例TF实现Softmax回归Softmax分类MNIST手写数字识别项目案例TF框架模型的保存和加载8)TF实现DNN多层神经网络9)DNN分类MNIST手写数字识别项目案例10)Tensorboard模块可视化这些就是深度学习涉及到的一些知识,一般来说深入理解神经网络算法及其优化算法,掌握TensorFlow开发流程,通过实现神经网络完成回归和分类任务。

TensorFlow框架学好了,其它深度学习框架比如Keras、PyTorch掌握起来易如反掌。另外可以进行一些实战,这样才更熟练。

python 神经网络预测 持续性预测

学习人工智能时,我给自己定了一个目标--用Python写一个简单的神经网络。为了确保真得理解它,我要求自己不使用任何神经网络库,从头写起。多亏了AndrewTrask写得一篇精彩的博客,我做到了!

下面贴出那九行代码:在这篇文章中,我将解释我是如何做得,以便你可以写出你自己的。我将会提供一个长点的但是更完美的源代码。

如何用9行Python代码编写一个简易神经网络

学习人工智能时,我给自己定了一个目标--用Python写一个简单的神经网络。为了确保真得理解它,我要求自己不使用任何神经网络库,从头写起。多亏了AndrewTrask写得一篇精彩的博客,我做到了!

下面贴出那九行代码:在这篇文章中,我将解释我是如何做得,以便你可以写出你自己的。我将会提供一个长点的但是更完美的源代码。首先,神经网络是什么?人脑由几千亿由突触相互连接的细胞(神经元)组成。

突触传入足够的兴奋就会引起神经元的兴奋。这个过程被称为“思考”。我们可以在计算机上写一个神经网络来模拟这个过程。不需要在生物分子水平模拟人脑,只需模拟更高层级的规则。

我们使用矩阵(二维数据表格)这一数学工具,并且为了简单明了,只模拟一个有3个输入和一个输出的神经元。我们将训练神经元解决下面的问题。前四个例子被称作训练集。你发现规律了吗?‘?’是0还是1?

你可能发现了,输出总是等于输入中最左列的值。所以‘?’应该是1。训练过程但是如何使我们的神经元回答正确呢?赋予每个输入一个权重,可以是一个正的或负的数字。

拥有较大正(或负)权重的输入将决定神经元的输出。首先设置每个权重的初始值为一个随机数字,然后开始训练过程:取一个训练样本的输入,使用权重调整它们,通过一个特殊的公式计算神经元的输出。

计算误差,即神经元的输出与训练样本中的期待输出之间的差值。根据误差略微地调整权重。重复这个过程1万次。最终权重将会变为符合训练集的一个最优解。

如果使用神经元考虑这种规律的一个新情形,它将会给出一个很棒的预测。这个过程就是backpropagation。计算神经元输出的公式你可能会想,计算神经元输出的公式是什么?

首先,计算神经元输入的加权和,即接着使之规范化,结果在0,1之间。为此使用一个数学函数--Sigmoid函数:Sigmoid函数的图形是一条“S”状的曲线。

把第一个方程代入第二个,计算神经元输出的最终公式为:你可能注意到了,为了简单,我们没有引入最低兴奋阈值。调整权重的公式我们在训练时不断调整权重。但是怎么调整呢?

可以使用“ErrorWeightedDerivative”公式:为什么使用这个公式?首先,我们想使调整和误差的大小成比例。其次,乘以输入(0或1),如果输入是0,权重就不会调整。

最后,乘以Sigmoid曲线的斜率(图4)。

为了理解最后一条,考虑这些:我们使用Sigmoid曲线计算神经元的输出如果输出是一个大的正(或负)数,这意味着神经元采用这种(或另一种)方式从图四可以看出,在较大数值处,Sigmoid曲线斜率小如果神经元认为当前权重是正确的,就不会对它进行很大调整。

乘以Sigmoid曲线斜率便可以实现这一点Sigmoid曲线的斜率可以通过求导得到:把第二个等式代入第一个等式里,得到调整权重的最终公式:当然有其他公式,它们可以使神经元学习得更快,但是这个公式的优点是非常简单。

构造Python代码虽然我们没有使用神经网络库,但是将导入Python数学库numpy里的4个方法。

分别是:exp--自然指数array--创建矩阵dot--进行矩阵乘法random--产生随机数比如,我们可以使用array()方法表示前面展示的训练集:“.T”方法用于矩阵转置(行变列)。

所以,计算机这样存储数字:我觉得我们可以开始构建更优美的源代码了。给出这个源代码后,我会做一个总结。我对每一行源代码都添加了注释来解释所有内容。注意在每次迭代时,我们同时处理所有训练集数据。

所以变量都是矩阵(二维数据表格)。下面是一个用Python写地完整的示例代码。我们做到了!我们用Python构建了一个简单的神经网络!首先神经网络对自己赋予随机权重,然后使用训练集训练自己。

接着,它考虑一种新的情形[1,0,0]并且预测了0.99993704。正确答案是1。非常接近!传统计算机程序通常不会学习。

而神经网络却能自己学习,适应并对新情形做出反应,这是多么神奇,就像人类一样。

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
包含文件:Python代码+设计报告 本文主要分析影响房价的因素,数据来源为链家网,机器学习模型的使用中,采用了三种线性模型,一种非线性模型,最后得出的结论是房子的大小,房子的位置,房子的建造年份以及房子的高度对房价影响较大。 目录 房价影响因素分析 1 一、问题描述 1 二、数据收集及处理 2 (1)数据源选择 2 安居客房价信息 2 搜房网房价信息 2 链家网房价信息 2 (2)数据收集 2 (3)数据处理 2 三、采用的模型及原因 3 (1)线性回归模型 3 (2)神经网络 3 (3)支持向量机 3 四、使用的python机器学习库 3 五、建模过程 4 (1)数据特征分析 4 (2)调参 4 (3)结果分析及模型对比 4 六、非线性模型建模 5 (1)非线性决策树 5 (2)结论 5 七、房价查询界面 5 八、改进措施 6 (1)收集更多数据 6 数据集在20000条以下时的训练学习曲线 7 数据集在40000条以下时的训练学习曲线 7 (2)寻找更多特征 8 附录 8 数据采集 9 数据训练 13 一、问题描述 现在房价居高不下,特别是上海等一线城市,房价更是高的离谱,那么在决定一个房子的价格中,哪些因素占了主要的地位,如何让想买房的人快速获取大概的房价信息。那么本文介绍的就是如何用机器学习去训练上海房价信息并生成模型然后进行分析的过程。 详细介绍参考博客:https://blog.csdn.net/sheziqiong/article/details/122286264
在 Python 中构建神经网络模型,通常使用深度学习框架,如 TensorFlow、PyTorch、Keras 等。这里以 TensorFlow 为例,简要介绍构建神经网络模型的过程: 1. 导入相关库 ```python import tensorflow as tf from tensorflow import keras ``` 2. 构建模型 通过 keras.Sequential() 创建一个空的神经网络模型,然后通过添加层来搭建网络结构。 ```python model = keras.Sequential() # 添加输入层 model.add(keras.layers.Dense(units=64, input_shape=(784,))) # 添加隐藏层 model.add(keras.layers.Dense(units=32, activation='relu')) # 添加输出层 model.add(keras.layers.Dense(units=10, activation='softmax')) ``` 以上代码定义了一个包含 3 层的神经网络模型,其中输入层有 784 个神经元,隐藏层有 32 个神经元,输出层有 10 个神经元。 3. 编译模型 在训练之前需要对模型进行编译,指定损失函数、优化器和评价指标。 ```python model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) ``` 4. 训练模型 使用 fit() 方法来训练模型,需要传入训练集数据和标签,以及训练的一些超参数。 ```python model.fit(x_train, y_train, batch_size=64, epochs=10) ``` 5. 评估模型 使用 evaluate() 方法来评估模型的性能。 ```python test_loss, test_acc = model.evaluate(x_test, y_test) print('Test accuracy:', test_acc) ``` 6. 使用模型进行预测 使用 predict() 方法来进行预测。 ```python predictions = model.predict(x_test) ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值