自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(416)
  • 收藏
  • 关注

原创 【Matlab】SSA-BP麻雀搜索算法优化BP神经网络回归预测 可预测未来(附代码)

传统的BP神经网络存在一些问题,比如容易陷入局部最优解、训练速度慢等。为了解决这些问题,我们引入了麻雀算法作为优化方法,将其与BP神经网络相结合,提出了SSA-BP算法。首先,我们来了解一下麻雀算法。麻雀算法是一种模拟麻雀群体行为的优化算法,它通过模拟麻雀的觅食行为来寻找最优解。在SSA-BP算法中,我们将麻雀算法应用于BP神经网络的训练过程中,以提高其性能。SSA-BP算法的流程如下:(1)数据准备:首先,我们需要准备历史数据作为训练集。

2024-08-29 00:52:18 677

原创 【Matlab】SVM支持向量机回归预测算法 可预测未来数据(附代码)

SVM(Support Vector Machine)即支持向量机,是一种常见的机器学习算法,被广泛应用于分类和回归问题中。它的主要思想是将训练数据映射到高维空间中,然后在该空间中找到一个最优的超平面来分隔不同类别的样本。SVM 的目标是找到一个最大间隔超平面,即具有最大边际(Margin)的超平面,以保证分类的鲁棒性和泛化能力。在 SVM 中,支持向量是指距离超平面最近的一些样本点,它们对于寻找最大边际超平面起着非常重要的作用。

2024-08-27 17:41:15 262

原创 【Matlab】RF随机森林回归预测算法 可预测未来数据(附代码)

随机森林的基本思想是利用多个决策树对时序数据进行预测,其中每个决策树都使用不同的随机抽样方式选择训练数据,以减小过拟合的风险。随机森林时序预测算法的主要步骤如下:(1)样本抽样:从原始数据中随机抽取一部分样本,用于训练每个决策树。(2)特征抽样:从原始特征中随机选取一部分特征,用于训练每个决策树。(3)决策树训练:使用抽样得到的样本和特征,构建多个决策树,其中每个树都是一组独立的分类器。

2024-08-27 11:15:27 658

原创 【Matlab】RBF径向基神经网络回归预测算法 可预测未来数据(附代码)

RBF 神经网络(Radial Basis Function Neural Network)是一种基于径向基函数的前向型神经网络。它的特点是具有快速的训练速度和良好的泛化性能。RBF 神经网络的基本结构包括输入层、隐藏层和输出层。其中隐藏层是 RBF 层,它的神经元使用径向基函数来计算输入向量与每个神经元之间的距离,用这个距离值来作为神经元的激活函数。常用的径向基函数包括高斯函数、多项式函数等。

2024-08-26 18:31:09 285

原创 【Matlab】PSO-BP 基于粒子群算法优化BP神经网络的数据回归预测 可预测未来数据(附代码)

PSO-BP算法是一种结合了粒子群算法(PSO)和BP神经网络的方法,用于数据时序预测。下面是PSO-BP算法的原理和过程:1. 数据准备:首先,将时序数据按照一定的时间窗口划分为输入序列和输出序列。例如,可以将过去几个时间步的数值作为输入,预测未来一个时间步的数值作为输出。2. 初始化粒子群:对于PSO-BP算法,需要初始化一组粒子,每个粒子代表了BP神经网络的一组权重和阈值参数。每个粒子都有自己的位置和速度。

2024-08-26 18:13:49 417

原创 【Matlab】PLS偏最小二乘法回归预测算法 可预测未来数据(附代码)

偏最小二乘法是一种新型的多元统计数据分析方法,于1983年由S.Wold和C.Albano等人首次提出。偏最小二乘法实现了,在一个算法下,可以同时实现回归建模(多元线性回归)、数据结构简化(主成分分析)以及两组变量之间的相关性分析(典型相关分析)。PCA方法虽解决了自变量共线性的问题,但是并没有考虑自变量主元对于因变量变化的解释作用。所以删除的次要主元有可能包含对回归有益的信息,而保留的主元有可能会夹杂一些对回归模型输出无益的噪声。

2024-08-26 18:05:03 469

原创 【Matlab】LSTM长短期记忆神经网络回归预测算法 可预测未来数据(附代码)

LSTM(Long Short-Term Memory)是一种常用的循环神经网络(Recurrent Neural Network,RNN)结构,由于其对于长序列数据的处理能力,被广泛应用于语音识别、自然语言处理、图像处理等领域。LSTM 网络的主要特点是增加了一个称为“记忆单元(Memory Cell)”的结构,用于控制网络的信息流动。这个结构可以记忆信息并在需要的时候将其加入到当前的处理中,从而更好地处理长序列数据。

2024-08-26 17:46:21 626

原创 【Matlab】LSSVM最小二乘支持向量机回归预测算法 可预测未来数据(附代码)

支持向量机是一种强大的分类和回归方法,它在机器学习领域中具有广泛的应用。最小二乘支持向量机(LSSVM)是支持向量机的一种变体,它通过最小化目标函数来建立分类模型。本文将着重介绍基于LSSVM的数据分类预测方法,并提供Matlab代码供读者参考。1. LSSVM的原理及特点LSSVM是一种非线性分类模型,它通过将数据映射到高维特征空间中来实现非线性分类。

2024-08-26 17:02:12 318

原创 【Matlab】基于遗传算法优化BP神经网络 (GA-BP)的数据回归预测 可预测未来数据(附代码)

基于遗传算法优化BP神经网络 (GA-BP) 的数据时序预测是一种常用的机器学习方法,用于预测时间序列数据的趋势和未来值。在使用这种方法之前,需要将时间序列数据转化为适合BP神经网络处理的形式。常用的方法是将时间序列数据转化为滞后观测值的矩阵形式,以便将其作为BP神经网络的输入。然后,使用遗传算法对BP神经网络的权重和阈值进行优化。遗传算法通过模拟自然选择和遗传机制,使用种群中的个体来表示网络权重和阈值的不同组合。

2024-08-26 16:25:12 373

原创 【Matlab】ELM极限学习机回归预测算法 可预测未来数据(附代码)

ELM(Extreme Learning Machine)是一种单层前馈神经网络结构,与传统神经网络不同的是,ELM的隐层神经元权重以及偏置都是随机产生的,并且在网络训练过程中不会更新。这种随机初始化的方法使得ELM的训练速度非常快,同时避免了传统神经网络中需要反复调整权重的问题。随机初始化隐层神经元的权重和偏置,构建网络结构。将训练数据输入到网络中,得到隐层神经元的输出。对隐层神经元的输出和训练数据的标签进行线性回归,得到输出层的权重。

2024-08-26 14:39:10 300

原创 【Matlab】CNN卷积神经网络回归预测算法 可预测未来(附代码)

CNN(Convolutional Neural Network,卷积神经网络)是一种前馈神经网络,主要用于处理具有类似网格结构的数据,例如图像和音频。CNN 的主要特点是卷积层和池化层的交替使用来提取数据特征,以及使用全连接层对这些特征进行分类和识别。CNN 的主要结构包括卷积层、池化层和全连接层。其中卷积层主要用于提取数据中的特征,它通过将一个小的卷积核在数据上滑动,将局部特征提取出来。池化层则用于降低数据的维度,减少特征数量,从而简化模型的复杂度。

2024-08-26 00:16:57 501

原创 【Matlab】CNN-LSTM回归预测 可预测未来 卷积神经网络-长短期记忆神经网络组合模型(附代码)

CNN-LSTM神经网络模型是一种结合了卷积神经网络(Convolutional Neural Network,CNN)和长短期记忆网络(Long Short-Term Memory,LSTM)的混合模型。这种模型常用于处理序列数据,如文本、语音和时间序列数据等。CNN-LSTM模型的基本结构是将CNN用于提取输入数据的局部特征,然后将这些特征序列输入到LSTM中进行序列建模和预测。CNN主要用于捕捉输入数据的空间局部特征,通过卷积层和池化层来提取特征。

2024-08-25 22:39:58 413

原创 【Matlab】BP 神经网络回归预测算法 可预测未来数据(附代码)

BP 神经网络是一种常见的人工神经网络,也是一种有监督学习的神经网络。其全称为“Back Propagation”,即反向传播算法。BP 神经网络主要由输入层、隐藏层和输出层组成,每一层都由多个神经元组成。BP 神经网络的学习过程是通过不断地调整权值和偏置值来逐步提高网络的精度。BP 神经网络的训练过程可以分为两个阶段:前向传播和反向传播。在前向传播中,输入信号通过各层的神经元,最终产生输出结果。

2024-08-25 22:27:58 477

原创 【Matlab】SVM支持向量机回归预测算法(附代码)

SVM(Support Vector Machine)即支持向量机,是一种常见的机器学习算法,被广泛应用于分类和回归问题中。它的主要思想是将训练数据映射到高维空间中,然后在该空间中找到一个最优的超平面来分隔不同类别的样本。SVM 的目标是找到一个最大间隔超平面,即具有最大边际(Margin)的超平面,以保证分类的鲁棒性和泛化能力。在 SVM 中,支持向量是指距离超平面最近的一些样本点,它们对于寻找最大边际超平面起着非常重要的作用。

2024-07-21 20:52:47 503

原创 【Matlab】RF随机森林回归预测算法(附代码)

随机森林的基本思想是利用多个决策树对时序数据进行预测,其中每个决策树都使用不同的随机抽样方式选择训练数据,以减小过拟合的风险。随机森林时序预测算法的主要步骤如下:(1)样本抽样:从原始数据中随机抽取一部分样本,用于训练每个决策树。(2)特征抽样:从原始特征中随机选取一部分特征,用于训练每个决策树。(3)决策树训练:使用抽样得到的样本和特征,构建多个决策树,其中每个树都是一组独立的分类器。

2024-07-21 20:13:35 552

原创 【Matlab】RBF径向基神经网络回归预测算法(附代码)

RBF 神经网络(Radial Basis Function Neural Network)是一种基于径向基函数的前向型神经网络。它的特点是具有快速的训练速度和良好的泛化性能。RBF 神经网络的基本结构包括输入层、隐藏层和输出层。其中隐藏层是 RBF 层,它的神经元使用径向基函数来计算输入向量与每个神经元之间的距离,用这个距离值来作为神经元的激活函数。常用的径向基函数包括高斯函数、多项式函数等。

2024-07-21 19:56:47 498

原创 【Matlab】PSO-BP 基于粒子群算法优化BP神经网络的数据回归预测(附代码)

PSO-BP算法是一种结合了粒子群算法(PSO)和BP神经网络的方法,用于数据时序预测。下面是PSO-BP算法的原理和过程:1. 数据准备:首先,将时序数据按照一定的时间窗口划分为输入序列和输出序列。例如,可以将过去几个时间步的数值作为输入,预测未来一个时间步的数值作为输出。2. 初始化粒子群:对于PSO-BP算法,需要初始化一组粒子,每个粒子代表了BP神经网络的一组权重和阈值参数。每个粒子都有自己的位置和速度。

2024-07-21 18:17:24 599

原创 【Matlab】PLS偏最小二乘法回归预测算法(附代码)

偏最小二乘法是一种新型的多元统计数据分析方法,于1983年由S.Wold和C.Albano等人首次提出。偏最小二乘法实现了,在一个算法下,可以同时实现回归建模(多元线性回归)、数据结构简化(主成分分析)以及两组变量之间的相关性分析(典型相关分析)。PCA方法虽解决了自变量共线性的问题,但是并没有考虑自变量主元对于因变量变化的解释作用。所以删除的次要主元有可能包含对回归有益的信息,而保留的主元有可能会夹杂一些对回归模型输出无益的噪声。

2024-07-21 16:25:21 745

原创 【Matlab】LSTM长短期记忆神经网络回归预测算法(附代码)

LSTM(Long Short-Term Memory)是一种常用的循环神经网络(Recurrent Neural Network,RNN)结构,由于其对于长序列数据的处理能力,被广泛应用于语音识别、自然语言处理、图像处理等领域。LSTM 网络的主要特点是增加了一个称为“记忆单元(Memory Cell)”的结构,用于控制网络的信息流动。这个结构可以记忆信息并在需要的时候将其加入到当前的处理中,从而更好地处理长序列数据。

2024-07-21 15:52:44 382

原创 【Matlab】LSSVM最小二乘支持向量机回归预测算法(附代码)

支持向量机是一种强大的分类和回归方法,它在机器学习领域中具有广泛的应用。最小二乘支持向量机(LSSVM)是支持向量机的一种变体,它通过最小化目标函数来建立分类模型。本文将着重介绍基于LSSVM的数据分类预测方法,并提供Matlab代码供读者参考。1. LSSVM的原理及特点LSSVM是一种非线性分类模型,它通过将数据映射到高维特征空间中来实现非线性分类。

2024-07-21 15:18:51 349

原创 【Matlab】基于遗传算法优化BP神经网络 (GA-BP)的数据回归预测(附代码)

基于遗传算法优化BP神经网络 (GA-BP) 的数据时序预测是一种常用的机器学习方法,用于预测时间序列数据的趋势和未来值。在使用这种方法之前,需要将时间序列数据转化为适合BP神经网络处理的形式。常用的方法是将时间序列数据转化为滞后观测值的矩阵形式,以便将其作为BP神经网络的输入。然后,使用遗传算法对BP神经网络的权重和阈值进行优化。遗传算法通过模拟自然选择和遗传机制,使用种群中的个体来表示网络权重和阈值的不同组合。

2024-07-21 11:36:48 442

原创 【Matlab】ELM极限学习机回归预测算法(附代码)

ELM(Extreme Learning Machine)是一种单层前馈神经网络结构,与传统神经网络不同的是,ELM的隐层神经元权重以及偏置都是随机产生的,并且在网络训练过程中不会更新。这种随机初始化的方法使得ELM的训练速度非常快,同时避免了传统神经网络中需要反复调整权重的问题。随机初始化隐层神经元的权重和偏置,构建网络结构。将训练数据输入到网络中,得到隐层神经元的输出。对隐层神经元的输出和训练数据的标签进行线性回归,得到输出层的权重。

2024-07-21 11:08:57 391

原创 【Matlab】CNN卷积神经网络回归预测算法(附代码)

CNN(Convolutional Neural Network,卷积神经网络)是一种前馈神经网络,主要用于处理具有类似网格结构的数据,例如图像和音频。CNN 的主要特点是卷积层和池化层的交替使用来提取数据特征,以及使用全连接层对这些特征进行分类和识别。CNN 的主要结构包括卷积层、池化层和全连接层。其中卷积层主要用于提取数据中的特征,它通过将一个小的卷积核在数据上滑动,将局部特征提取出来。池化层则用于降低数据的维度,减少特征数量,从而简化模型的复杂度。

2024-07-20 23:18:18 798

原创 【Matlab】CNN-LSTM回归预测 卷积神经网络-长短期记忆神经网络组合模型(附代码)

CNN-LSTM神经网络模型是一种结合了卷积神经网络(Convolutional Neural Network,CNN)和长短期记忆网络(Long Short-Term Memory,LSTM)的混合模型。这种模型常用于处理序列数据,如文本、语音和时间序列数据等。CNN-LSTM模型的基本结构是将CNN用于提取输入数据的局部特征,然后将这些特征序列输入到LSTM中进行序列建模和预测。CNN主要用于捕捉输入数据的空间局部特征,通过卷积层和池化层来提取特征。

2024-07-20 22:22:53 1130 1

原创 【Matlab】BP 神经网络回归预测算法(附代码)

BP 神经网络是一种常见的人工神经网络,也是一种有监督学习的神经网络。其全称为“Back Propagation”,即反向传播算法。BP 神经网络主要由输入层、隐藏层和输出层组成,每一层都由多个神经元组成。BP 神经网络的学习过程是通过不断地调整权值和偏置值来逐步提高网络的精度。BP 神经网络的训练过程可以分为两个阶段:前向传播和反向传播。在前向传播中,输入信号通过各层的神经元,最终产生输出结果。

2024-07-20 20:01:38 524

原创 【Matlab】PSO-RF 基于粒子群算法优化RF随机森林时序预测(附代码)

随着大数据时代的到来,数据分类算法的研究和应用变得越来越重要。在众多的分类算法中,随机森林(Random Forest,简称RF)因其在处理大规模数据集和高维特征上的优势而备受关注。然而,传统的随机森林算法在构建决策树和选择特征子集时存在一定的不足之处。为了克服这些问题,研究者们提出了许多改进的方法,其中一种是基于粒子群优化(Particle Swarm Optimization,简称PSO)的随机森林算法(PSO-RF)。PSO是一种基于群体智能的优化算法,模拟了鸟群觅食的行为。

2024-07-12 08:24:57 859

原创 【Matlab】PLS偏最小二乘法时序预测算法(附代码)

偏最小二乘法是一种新型的多元统计数据分析方法,于1983年由S.Wold和C.Albano等人首次提出。偏最小二乘法实现了,在一个算法下,可以同时实现回归建模(多元线性回归)、数据结构简化(主成分分析)以及两组变量之间的相关性分析(典型相关分析)。PCA方法虽解决了自变量共线性的问题,但是并没有考虑自变量主元对于因变量变化的解释作用。所以删除的次要主元有可能包含对回归有益的信息,而保留的主元有可能会夹杂一些对回归模型输出无益的噪声。

2024-07-10 18:08:00 513

原创 【Matlab】LSSVM最小二乘支持向量机时序预测算法(附代码)

支持向量机是一种强大的分类和回归方法,它在机器学习领域中具有广泛的应用。最小二乘支持向量机(LSSVM)是支持向量机的一种变体,它通过最小化目标函数来建立分类模型。本文将着重介绍基于LSSVM的数据分类预测方法,并提供Matlab代码供读者参考。1. LSSVM的原理及特点LSSVM是一种非线性分类模型,它通过将数据映射到高维特征空间中来实现非线性分类。

2024-07-10 17:18:29 621

原创 【Matlab】CNN-LSTM时序预测 卷积神经网络-长短期记忆神经网络组合模型(附代码)

CNN-LSTM神经网络模型是一种结合了卷积神经网络(Convolutional Neural Network,CNN)和长短期记忆网络(Long Short-Term Memory,LSTM)的混合模型。这种模型常用于处理序列数据,如文本、语音和时间序列数据等。CNN-LSTM模型的基本结构是将CNN用于提取输入数据的局部特征,然后将这些特征序列输入到LSTM中进行序列建模和预测。CNN主要用于捕捉输入数据的空间局部特征,通过卷积层和池化层来提取特征。

2024-07-10 10:52:53 724

原创 【Matlab】CNN-LSTM分类 卷积神经网络-长短期记忆神经网络组合模型(附代码)

CNN-LSTM神经网络模型是一种结合了卷积神经网络(Convolutional Neural Network,CNN)和长短期记忆网络(Long Short-Term Memory,LSTM)的混合模型。这种模型常用于处理序列数据,如文本、语音和时间序列数据等。CNN-LSTM模型的基本结构是将CNN用于提取输入数据的局部特征,然后将这些特征序列输入到LSTM中进行序列建模和预测。CNN主要用于捕捉输入数据的空间局部特征,通过卷积层和池化层来提取特征。

2024-06-21 17:55:21 1109

原创 【Matlab】BP 神经网络分类算法(附代码)

BP 神经网络是一种常见的人工神经网络,也是一种有监督学习的神经网络。其全称为“Back Propagation”,即反向传播算法。BP 神经网络主要由输入层、隐藏层和输出层组成,每一层都由多个神经元组成。BP 神经网络的学习过程是通过不断地调整权值和偏置值来逐步提高网络的精度。BP 神经网络的训练过程可以分为两个阶段:前向传播和反向传播。在前向传播中,输入信号通过各层的神经元,最终产生输出结果。

2024-06-21 17:33:59 367

原创 【Matlab】CNN卷积神经网络分类算法(附代码)

CNN(Convolutional Neural Network,卷积神经网络)是一种前馈神经网络,主要用于处理具有类似网格结构的数据,例如图像和音频。CNN 的主要特点是卷积层和池化层的交替使用来提取数据特征,以及使用全连接层对这些特征进行分类和识别。CNN 的主要结构包括卷积层、池化层和全连接层。其中卷积层主要用于提取数据中的特征,它通过将一个小的卷积核在数据上滑动,将局部特征提取出来。池化层则用于降低数据的维度,减少特征数量,从而简化模型的复杂度。

2024-06-21 17:14:50 545

原创 【Matlab】ELM极限学习机分类算法(附代码)

ELM(Extreme Learning Machine)是一种单层前馈神经网络结构,与传统神经网络不同的是,ELM的隐层神经元权重以及偏置都是随机产生的,并且在网络训练过程中不会更新。这种随机初始化的方法使得ELM的训练速度非常快,同时避免了传统神经网络中需要反复调整权重的问题。随机初始化隐层神经元的权重和偏置,构建网络结构。将训练数据输入到网络中,得到隐层神经元的输出。对隐层神经元的输出和训练数据的标签进行线性回归,得到输出层的权重。

2024-06-21 16:06:56 216

原创 【Matlab】基于遗传算法优化BP神经网络 (GA-BP)的数据分类算法(附代码)

基于遗传算法优化BP神经网络 (GA-BP) 的数据时序预测是一种常用的机器学习方法,用于预测时间序列数据的趋势和未来值。在使用这种方法之前,需要将时间序列数据转化为适合BP神经网络处理的形式。常用的方法是将时间序列数据转化为滞后观测值的矩阵形式,以便将其作为BP神经网络的输入。然后,使用遗传算法对BP神经网络的权重和阈值进行优化。遗传算法通过模拟自然选择和遗传机制,使用种群中的个体来表示网络权重和阈值的不同组合。

2024-06-21 15:44:17 503

原创 【Matlab】LSTM长短期记忆神经网络分类算法(附代码)

LSTM(Long Short-Term Memory)是一种常用的循环神经网络(Recurrent Neural Network,RNN)结构,由于其对于长序列数据的处理能力,被广泛应用于语音识别、自然语言处理、图像处理等领域。LSTM 网络的主要特点是增加了一个称为“记忆单元(Memory Cell)”的结构,用于控制网络的信息流动。这个结构可以记忆信息并在需要的时候将其加入到当前的处理中,从而更好地处理长序列数据。

2024-06-21 15:29:09 895

原创 【Matlab】PSO-BP 基于粒子群算法优化BP神经网络的分类算法(附代码)

PSO-BP算法是一种结合了粒子群算法(PSO)和BP神经网络的方法,用于数据时序预测。下面是PSO-BP算法的原理和过程:1. 数据准备:首先,将时序数据按照一定的时间窗口划分为输入序列和输出序列。例如,可以将过去几个时间步的数值作为输入,预测未来一个时间步的数值作为输出。2. 初始化粒子群:对于PSO-BP算法,需要初始化一组粒子,每个粒子代表了BP神经网络的一组权重和阈值参数。每个粒子都有自己的位置和速度。

2024-06-21 14:42:16 400

原创 【Matlab】RBF径向基神经网络分类算法(附代码)

RBF 神经网络(Radial Basis Function Neural Network)是一种基于径向基函数的前向型神经网络。它的特点是具有快速的训练速度和良好的泛化性能。RBF 神经网络的基本结构包括输入层、隐藏层和输出层。其中隐藏层是 RBF 层,它的神经元使用径向基函数来计算输入向量与每个神经元之间的距离,用这个距离值来作为神经元的激活函数。常用的径向基函数包括高斯函数、多项式函数等。

2024-06-21 14:10:51 407

原创 【Matlab】RF随机森林分类算法(附代码)

随机森林的基本思想是利用多个决策树对时序数据进行预测,其中每个决策树都使用不同的随机抽样方式选择训练数据,以减小过拟合的风险。随机森林时序预测算法的主要步骤如下:(1)样本抽样:从原始数据中随机抽取一部分样本,用于训练每个决策树。(2)特征抽样:从原始特征中随机选取一部分特征,用于训练每个决策树。(3)决策树训练:使用抽样得到的样本和特征,构建多个决策树,其中每个树都是一组独立的分类器。

2024-06-21 13:40:17 1034

原创 【Matlab】SVM支持向量机分类算法(附代码)

SVM(Support Vector Machine)即支持向量机,是一种常见的机器学习算法,被广泛应用于分类和回归问题中。它的主要思想是将训练数据映射到高维空间中,然后在该空间中找到一个最优的超平面来分隔不同类别的样本。SVM 的目标是找到一个最大间隔超平面,即具有最大边际(Margin)的超平面,以保证分类的鲁棒性和泛化能力。在 SVM 中,支持向量是指距离超平面最近的一些样本点,它们对于寻找最大边际超平面起着非常重要的作用。

2024-06-21 13:27:35 929

原创 Python YOLOv5 7.0 基于深度学习的口罩检测识别系统

大约11200张佩戴口罩和未佩戴口罩的人脸图片,其中带口罩的占60%~70%。标注的标签有VOC和YOLO两种格式,分别存储在xml和txt文件中。根据YOLOv5源码一步一步进行训练、检测的流程说明,包括基本参数的修改说明,部分代码的注释等。可以把数据集的图片和标注,按照训练集、验证集、测试集设定的比例进行随机分割。根据标注,在数据集的图片上画出框框,这个可以用来验证数据集是否标注正确。可以把VOC格式的标注转换成YOLO格式的。可以把YOLO格式的标注转换成VOC格式的。40页左右的相关设计报告。

2024-06-08 11:30:39 664

Matlab CNN卷积神经网络回归预测 含测试数据集 预测图像和评价指标详细

详情参考:https://blog.csdn.net/vvoennvv/article/details/140579408 Matlab CNN卷积神经网络回归预测 含测试数据集 预测图像和评价指标详细。中文注释非常清晰,按照示例数据修改格式,替换数据集即可运行,数据集为excel

2024-07-21

Matlab BP 神经网络回归预测算法 含测试数据集 预测图像和评价指标详细

详情参考:https://blog.csdn.net/vvoennvv/article/details/140575473 Matlab BP 神经网络回归预测算法 含测试数据集 预测图像和评价指标详细。中文注释非常清晰,按照示例数据修改格式,替换数据集即可运行,数据集为excel

2024-07-20

Matlab RF随机森林回归预测 含测试数据集 预测图像和评价指标详细

详情参考:https://blog.csdn.net/vvoennvv/article/details/140593005 Matlab RF随机森林回归预测 含测试数据集 预测图像和评价指标详细。中文注释非常清晰,按照示例数据修改格式,替换数据集即可运行,数据集为excel

2024-07-21

Matlab RBF径向基神经网络回归预测 含测试数据集 预测图像和评价指标详细

详情参考:https://blog.csdn.net/vvoennvv/article/details/140591680 Matlab RBF径向基神经网络回归预测 含测试数据集 预测图像和评价指标详细。中文注释非常清晰,按照示例数据修改格式,替换数据集即可运行,数据集为excel

2024-07-21

Matlab PSO-BP 基于粒子群算法优化BP神经网络的回归预测 含测试数据集 预测图像和评价指标详细

详情参考:https://blog.csdn.net/vvoennvv/article/details/140591463 Matlab PSO-BP 基于粒子群算法优化BP神经网络的回归预测 含测试数据集 预测图像和评价指标详细。中文注释非常清晰,按照示例数据修改格式,替换数据集即可运行,数据集为excel

2024-07-21

Matlab PLS偏最小二乘法回归预测算法 含测试数据集 预测图像和评价指标详细

详情参考:https://blog.csdn.net/vvoennvv/article/details/140589653 Matlab PLS偏最小二乘法回归预测算法 含测试数据集 预测图像和评价指标详细。中文注释非常清晰,按照示例数据修改格式,替换数据集即可运行,数据集为excel

2024-07-21

Matlab LSTM长短期记忆神经网络回归预测 含测试数据集 预测图像和评价指标详细

详情参考:https://blog.csdn.net/vvoennvv/article/details/140589140 Matlab LSTM长短期记忆神经网络回归预测 含测试数据集 预测图像和评价指标详细。中文注释非常清晰,按照示例数据修改格式,替换数据集即可运行,数据集为excel

2024-07-21

Matlab LSSVM最小二乘支持向量机回归预测算法 含测试数据集 预测图像和评价指标详细

详情参考:https://blog.csdn.net/vvoennvv/article/details/140588554 Matlab LSSVM最小二乘支持向量机回归预测算法 含测试数据集 预测图像和评价指标详细。中文注释非常清晰,按照示例数据修改格式,替换数据集即可运行,数据集为excel

2024-07-21

Matlab GA-BP 基于遗传算法优化BP神经网络的回归预测 含测试数据集 预测图像和评价指标详细

详情参考:https://blog.csdn.net/vvoennvv/article/details/140585380 Matlab GA-BP 基于遗传算法优化BP神经网络的回归预测 含测试数据集 预测图像和评价指标详细。中文注释非常清晰,按照示例数据修改格式,替换数据集即可运行,数据集为excel

2024-07-21

Matlab CNN-LSTM回归预测 卷积神经网络-长短期记忆神经网络组合模型 含测试数据集 预测图像和评价指标详细

详情参考:https://blog.csdn.net/vvoennvv/article/details/140576595 Matlab CNN-LSTM回归预测 卷积神经网络-长短期记忆神经网络组合模型 含测试数据集 预测图像和评价指标详细。中文注释非常清晰,按照示例数据修改格式,替换数据集即可运行,数据集为excel

2024-07-20

Matlab ELM极限学习机回归预测 含测试数据集 预测图像和评价指标详细

详情参考:https://blog.csdn.net/vvoennvv/article/details/140584832 Matlab ELM极限学习机回归预测 含测试数据集 预测图像和评价指标详细。中文注释非常清晰,按照示例数据修改格式,替换数据集即可运行,数据集为excel

2024-07-21

STM32F030数字电源BUCK学习板PCB 原理图 源码

(1)带源码,keil工程 (2)带PCB和原理图,有AD和立创EDA文件 (3)带补偿大电流的压差 (4)带应用学习笔记

2024-07-16

Matlab CNN-LSTM时序预测 卷积神经网络-长短期记忆神经网络组合模型 含测试数据集 预测图像和评价指标详细

详情参考:https://blog.csdn.net/vvoennvv/article/details/140291456 Matlab CNN-LSTM时序预测 卷积神经网络-长短期记忆神经网络组合模型 预测图像和评价指标详细。中文注释非常清晰,按照示例数据修改格式,替换数据集即可运行,数据集为excel

2024-07-10

Matlab PSO-RF 基于粒子群算法优化RF随机森林时序预测 含测试数据集 预测图像和评价指标详细

详情参考:https://blog.csdn.net/vvoennvv/article/details/140368319 PSO-RF 基于粒子群算法优化RF随机森林时序预测 预测图像和评价指标详细。中文注释非常清晰,按照示例数据修改格式,替换数据集即可运行,数据集为excel

2024-07-12

Matlab PLS偏最小二乘法时序预测算法 含测试数据集 预测图像和评价指标详细

详情参考:https://blog.csdn.net/vvoennvv/article/details/140331044 Matlab PLS偏最小二乘法时序预测算法 预测图像和评价指标详细。中文注释非常清晰,按照示例数据修改格式,替换数据集即可运行,数据集为excel

2024-07-10

Matlab LSSVM最小二乘支持向量机时序预测算法 含测试数据集 预测图像和评价指标详细

详情参考:https://blog.csdn.net/vvoennvv/article/details/140319970 Matlab LSSVM最小二乘支持向量机时序预测算法 预测图像和评价指标详细。中文注释非常清晰,按照示例数据修改格式,替换数据集即可运行,数据集为excel

2024-07-10

Labview 电能质量分析系统设计 带设计报告 电压偏差、频率偏差、电压波动和闪变、电网谐波、三相电压不平衡度

基于虚拟仪器的电能质量参数分析系统 主要包括电压偏差、频率偏差、电压波动和闪变、电网谐波、三相电压不平衡度

2024-06-30

Labview 多通道数据采集系统 虚拟仪器 带设计报告

利用虚拟仪器技术、数字信号处理技术进行多通道数据采集 信号采用虚拟的NI PCI-6221数据采集卡采集,然后经过PCI总线送入PC机 实时采集、实时处理、实时存储

2024-06-29

YOLO 火焰、烟雾数据集 18800张图片,YOLO和VOC格式标注,TXT和XML

YOLO 火焰、烟雾数据集 18800张图片,YOLO和VOC格式标注,TXT和XML,适用于训练YOLO目标检测模型。拿到数据集后无需任何处理即可直接用于训练。

2024-06-24

Matlab 分类算法合集:SVM、RF、RBF、PSO-BP、LSTM、GA-BP、ELM、CNN、BP、CNN-LSTM

SVM支持向量机、RF随机森林、RBF径向基神经网络、PSO-BP 基于粒子群算法优化BP神经网络、LSTM长短期记忆神经网络、基于遗传算法优化BP神经网络 (GA-BP)、ELM极限学习机、CNN卷积神经网络、BP 神经网络、卷积神经网络-长短期记忆神经网络组合模型(CNN-LSTM) 详情请看: https://download.csdn.net/download/vvoennvv/89466499

2024-06-21

Matlab Simulink V2G技术 新能源电动汽车车载充放电机

(1)基于V2G技术的双向AC DC、DC DC充放电机MATLAB仿真模型 (2)前级电路为双向AC DC单相PWM整流器,输入AC220V,输入单位功率因数 (3)后级电路为双向DC DC,双向CLLC谐振变换器,谐振频率150kHz,采用PFM变频控制,输出DC360V (4)仿真功率3.5kW (5)正向变换时单相交流电网向电动汽车输出DC360V,反向变换时电动汽车向电网回馈能量

2024-10-25

STM32 BMS BQ76930电池管理 源码原理图 产品说明

(1)带CAN通信的源代码 (2)带原理图(AD、pdf) (3)带通信协议说明文档、芯片资料、电池安装说明 (4)带上位机软件

2024-10-24

Matlab GA遗传算法求解车间调度 实现最大完工时间极小化

1,代码注释清晰 2,已知机器个数、各工件各工序的加工时间、各工件各工序使用的机器,求解加工顺序和工件分配 3,实现最大完工时间极小化

2024-10-23

Matlab SSA-BP麻雀搜索算法优化BP神经网络回归预测 预测未来数据 含测试数据集 预测图像和评价指标详细

详情参考:https://blog.csdn.net/vvoennvv/article/details/141653032 Matlab SSA-BP麻雀搜索算法优化BP神经网络回归预测 预测未来数据 含测试数据集 预测图像和评价指标详细。中文注释非常清晰,按照示例数据修改格式,替换数据集即可运行,数据集为excel

2024-08-29

Matlab 回归预测合集 可预测未来数据:SVM、RF、PSO-BP、LSTM、GA-BP、CNN、BP、CNN-LSTM等等

可预测待测(未来)数据,详情请看: https://blog.csdn.net/vvoennvv/article/details/141532626 (1)SVM支持向量机 (2)RF随机森林 (3)RBF径向基神经网络 (4)PSO-BP 基于粒子群算法优化BP神经网络 (5)LSTM长短期记忆神经网络 (6)GA-BP基于遗传算法优化BP神经网络 (7)ELM极限学习机 (8)CNN卷积神经网络 (9)BP 神经网络 (10)CNN-LSTM卷积神经网络-长短期记忆神经网络组合模型 (11)LSSVM最小二乘支持向量机 (12)PLS偏最小二乘法 (13)SSA-BP麻雀搜索算法优化BP神经网络

2024-08-28

Matlab SVM支持向量机回归预测算法 预测未来数据 含测试数据集 预测图像和评价指标详细

详情参考:https://blog.csdn.net/vvoennvv/article/details/141604634 Matlab SVM支持向量机回归预测算法 预测未来数据 含测试数据集 预测图像和评价指标详细。中文注释非常清晰,按照示例数据修改格式,替换数据集即可运行,数据集为excel

2024-08-27

Matlab RF随机森林回归预测算法 预测未来数据 含测试数据集 预测图像和评价指标详细

详情参考:https://blog.csdn.net/vvoennvv/article/details/141597864 Matlab RF随机森林回归预测算法 预测未来数据 含测试数据集 预测图像和评价指标详细。中文注释非常清晰,按照示例数据修改格式,替换数据集即可运行,数据集为excel

2024-08-27

Matlab RBF径向基神经网络回归预测算法 预测未来数据 含测试数据集 预测图像和评价指标详细

详情参考:https://blog.csdn.net/vvoennvv/article/details/141570756 Matlab RBF径向基神经网络回归预测算法 预测未来数据 含测试数据集 预测图像和评价指标详细。中文注释非常清晰,按照示例数据修改格式,替换数据集即可运行,数据集为excel

2024-08-26

Matlab PSO-BP 基于粒子群算法优化BP神经网络的数据回归预测 预测未来数据 含测试数据集 预测图像和评价指标详细

详情参考:https://blog.csdn.net/vvoennvv/article/details/141570478 Matlab PSO-BP 基于粒子群算法优化BP神经网络的数据回归预测 预测未来数据 含测试数据集 预测图像和评价指标详细。中文注释非常清晰,按照示例数据修改格式,替换数据集即可运行,数据集为excel

2024-08-26

Matlab PLS偏最小二乘法回归预测算法 预测未来数据 含测试数据集 预测图像和评价指标详细

详情参考:https://blog.csdn.net/vvoennvv/article/details/141570237 Matlab PLS偏最小二乘法回归预测算法 预测未来数据 含测试数据集 预测图像和评价指标详细。中文注释非常清晰,按照示例数据修改格式,替换数据集即可运行,数据集为excel

2024-08-26

Matlab LSTM长短期记忆神经网络回归预测算法 预测未来数据 含测试数据集 预测图像和评价指标详细

详情参考:https://blog.csdn.net/vvoennvv/article/details/141569919 Matlab LSTM长短期记忆神经网络回归预测算法 预测未来数据 含测试数据集 预测图像和评价指标详细。中文注释非常清晰,按照示例数据修改格式,替换数据集即可运行,数据集为excel

2024-08-26

Matlab LSSVM最小二乘支持向量机回归预测算法 预测未来数据 含测试数据集 预测图像和评价指标详细

详情参考:https://blog.csdn.net/vvoennvv/article/details/141568642 Matlab LSSVM最小二乘支持向量机回归预测算法 预测未来数据 含测试数据集 预测图像和评价指标详细。中文注释非常清晰,按照示例数据修改格式,替换数据集即可运行,数据集为excel

2024-08-26

Matlab 基于遗传算法优化BP神经网络 (GA-BP)的数据回归预测 可预测未来数据 含测试数据集 预测图像和评价指标详细

详情参考:https://blog.csdn.net/vvoennvv/article/details/141566741 Matlab 基于遗传算法优化BP神经网络 (GA-BP)的数据回归预测 可预测未来数据 含测试数据集 预测图像和评价指标详细。中文注释非常清晰,按照示例数据修改格式,替换数据集即可运行,数据集为excel

2024-08-26

Matlab ELM极限学习机回归预测算法 可预测未来数据 含测试数据集 预测图像和评价指标详细

详情参考:https://blog.csdn.net/vvoennvv/article/details/141563512 Matlab ELM极限学习机回归预测算法 可预测未来数据 含测试数据集 预测图像和评价指标详细。中文注释非常清晰,按照示例数据修改格式,替换数据集即可运行,数据集为excel

2024-08-26

Matlab CNN卷积神经网络回归预测算法 可预测未来数据 含测试数据集 预测图像和评价指标详细

详情参考:https://blog.csdn.net/vvoennvv/article/details/141537475 Matlab CNN卷积神经网络回归预测算法 可预测未来数据 含测试数据集 预测图像和评价指标详细。中文注释非常清晰,按照示例数据修改格式,替换数据集即可运行,数据集为excel

2024-08-26

Matlab CNN-LSTM回归预测 预测未来 卷积神经网络-长短期记忆神经网络组合模型 含测试数据集 预测图像和评价指标详细

详情参考:https://blog.csdn.net/vvoennvv/article/details/140576595 Matlab CNN-LSTM回归预测 可预测未来 卷积神经网络-长短期记忆神经网络组合模型 含测试数据集 预测图像和评价指标详细。中文注释非常清晰,按照示例数据修改格式,替换数据集即可运行,数据集为excel

2024-08-25

Matlab BP 神经网络回归预测算法 可预测未来数据 含测试数据集 预测图像和评价指标详细

详情参考:https://blog.csdn.net/vvoennvv/article/details/141532626 Matlab BP 神经网络回归预测算法 可预测未来数据 含测试数据集 预测图像和评价指标详细。中文注释非常清晰,按照示例数据修改格式,替换数据集即可运行,数据集为excel

2024-08-25

STM32H743 支持IAP的bootloader开发,使用串口通过Ymodem协议传输固件,带上位机源码

包括内容: 1,bootloader工程源码, 2,测试主程序工程源码 3,支持Ymodem协议的上位机软件以及源码

2024-08-06

Matlab 回归预测合集:SVM、RF、RBF、PSO-BP、LSTM、GA-BP、ELM、CNN、BP、CNN-LSTM等等

(1)SVM支持向量机 (2)RF随机森林 (3)RBF径向基神经网络 (4)PSO-BP 基于粒子群算法优化BP神经网络 (5)LSTM长短期记忆神经网络 (6)GA-BP基于遗传算法优化BP神经网络 (7)ELM极限学习机 (8)CNN卷积神经网络 (9)BP 神经网络 (10)CNN-LSTM卷积神经网络-长短期记忆神经网络组合模型 (11)LSSVM最小二乘支持向量机 (12)PLS偏最小二乘法 详情请看: https://blog.csdn.net/vvoennvv/article/details/140576595

2024-07-21

Matlab SVM支持向量机回归预测 含测试数据集 预测图像和评价指标详细

详情参考:https://blog.csdn.net/vvoennvv/article/details/140593594 Matlab SVM支持向量机回归预测 含测试数据集 预测图像和评价指标详细。中文注释非常清晰,按照示例数据修改格式,替换数据集即可运行,数据集为excel

2024-07-21

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除