推荐系统的挑战
大多数有关推荐引擎的文章都关注推荐的所有优点:个性化的客户体验、降低客户流失率、增加销售额和增加收入。虽然所有这些都是事实,但正如我们从包括亚马逊在内的众多公司的例子中看到的那样,采用新技术需要一种战略方法——所以你应该现实并做好充分准备,而不仅仅是对未来的结果感到乐观。您必须意识到一些挑战。
缺乏数据
数据是任何预测模型的关键要素,推荐系统也不例外。他们根据可用信息生成准确的建议。只有那些被认为是最好的推荐系统来自拥有大量数据的公司(例如谷歌、亚马逊、Netflix 或 Spotify)的推荐系统才有意义。好的推荐系统会分析商品数据和客户行为数据,以找到相似之处并推荐商品。人工智能在数据上蓬勃发展:系统需要处理的数据越多,结果就越好。
一切都在改变
数据在变化,用户偏好在变化,您的业务一直在变化。这是一大堆更新。您的算法能否跟上变化?当然,您可以拥有考虑最新数据的实时建议,但它们也更难以维护。另一方面,批处理更容易维护,但不能反映数据的最新变化。
人们
不管你相信与否,推荐系统大部分问题的根源都是人。他们可能无法预测,但无论如何都希望技术能够帮助他们。我今天可能会在亚马逊上浏览智能手表,然后离开该网站,但明天我将不再对它感兴趣,现在我需要给我妹妹一件礼物。如果我想买一台电视,并且系统知道这一点,它是否还应该推荐电视或影响我的行为并推荐其他商品?当您关注人时,您可能会想到很多难题,而关注人仍然很重要,因为是他们购买了您的产品。
哦,还有一件小事。正如史蒂夫·乔布斯所说:
很多时候,人们不知道自己想要什么,直到你向他们展示为止。
这就是为什么“发现”因素在推荐中发挥着重要作用。人们可能倾向于观看类似的节目并阅读类似的书籍,比如说科幻小说。这是否意味着他们只想看科幻小说?他们需要多样性,这样他们才能发现自己已知之外的事物。
此外,有时评级并不反映现实。当人们观看一部愚蠢的喜剧时,他们对它的评价可能会低于奥斯卡电影。比方说 2 星与 5 星。这可能会告诉系统应该推荐奥斯卡电影。然而,现实并非那么简单。一部愚蠢的喜剧可能值 2 星,但仍然是周五晚上的首选。
优化
推荐系统应该一直变得越来越好。仅仅启动它并让它运行是不够的。机器学习算法帮助系统“学习”模式,但系统仍然需要一些指导才能提供相关结果。您需要改进它并确保无论发生什么变化,您仍然能够实现您的业务目标。
您听说过 Netflix 有奖竞赛吗?这是最佳协同过滤算法的公开竞赛。竞赛的目标是提高会员保留率。获胜者赢得了100万美元。Netflix 深知他们必须改进,而且做得越好,赚的钱就越多。推荐有助于降低客户流失率,这反过来又意味着更高的月收入。
推荐系统的投资回报率
推荐系统用于帮助公司通过减少客户流失和增加销量来赚更多钱。让我们看一些数字来证明这是真的。
如上所述,Netflix 正在不断改进其推荐引擎。他们投入了大量的金钱和时间,但它得到了回报——推荐影响了 Netflix 上 80% 的观看内容。这些算法有助于降低客户流失率,并帮助公司每年通过客户保留节省Netflix 还掌握了尽可能快地推荐的艺术——典型的会员通常会在浏览 10 到 20 部影片后 60 到 90 秒后失去兴趣。这虽然不是很多,但 Netflix 却成功地留住了客户并吸引了新客户。2017年第二季度,Netflix同比增长32.3%,在上一季度现有9900万会员的基础上增加了520万订阅用户。
现在,让我们看看亚马逊。截至2019年6月30日的十二个月,亚马逊的收入为$252.063B,同比增长21.11%。亚马逊无疑是在线零售之王。该公司早在 1998 年就推出了逐项协同过滤功能,此后一直在改进推荐功能。
在包括电子商务平台在内的许多服务中,推荐仅出现在客户旅程的一个阶段,但亚马逊在每一步都整合了推荐,以最大限度地提高订单价值。亚马逊从未透露过推荐带来了多少收入,但麦肯锡估计,消费者在亚马逊上购买的商品中有 35% 来自产品推荐。
衡量推荐系统的投资回报率
如果您希望看到投资回报,同时也希望帮助您改进模型,那么推荐引擎的评估指标是必要的。下面,我将列出一些用于评估推荐系统的标准指标。但是,您应该记住,您的推荐引擎是为了满足您的特定目标,因此您可以向列表添加不同的指标。
相互作用
它是评估用户对推荐的参与度的最重要的指标组。
- 点击率(CTR)
- 整体转化率
- 每个用户的转化率
商业冲击
最后一组指标是显示业务结果的指标。
- 带推荐的订单比例
- 每个订单的推荐商品
- 平均订单价值增加
- 收入增加
- 提高客户保留率
- 推荐与已售商品