DAY41——动态规划part3

文章探讨了如何使用动态规划(DP)方法来解决整数拆分问题,以找到将一个数字拆分为多个部分时能获得的最大乘积。核心思路是通过dp[i]=max((i-j)*j,j*dp[i-j])更新状态,其中i和j分别代表当前处理的数字和拆分的部分,最终保留产生最大乘积的路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 整数拆分

 dp[i]:分拆数字i,可以得到的最大乘积为dp[i]。

dp[i]=(i-j)*j或j * dp[i-j]两种可能,前者是拆成两个数的可能性,后者是拆成三个或更多的可能性
对于dp[i] = j * dp[i-j] 对每个i遍历j(1->i-1)
事实上是把i拆成j和i-j两个数,而dp[i-j]又是拆分成两个数,以此类推
根据题目要求,dp[i]保留为j * dp[i-1]里最大的那个

 

 代码随想录 (programmercarl.com)

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值