Python求职招聘数据分析系统+可视化 Flask框架 Echarts可视化 大数据毕业设计 建议收藏✅

博主介绍:✌全网粉丝10W+,前互联网大厂软件研发、集结硕博英豪成立工作室。专注于计算机相关专业项目实战6年之久,选择我们就是选择放心、选择安心毕业✌
> 🍅想要获取完整文章或者源码,或者代做,拉到文章底部即可与我联系了。🍅

点击查看作者主页,了解更多项目!

🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅

1、毕业设计:2025年计算机专业毕业设计选题汇总(建议收藏)✅

2、大数据毕业设计:2025年选题大全 深度学习 python语言 JAVA语言 hadoop和spark(建议收藏)✅

🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅

1、项目介绍

这个系统是一个基于Python、Flask框架、MySQL数据库以及Echarts可视化技术的招聘数据分析与可视化平台。它整合了招聘市场的多维度数据,通过直观的图表和交互界面为用户提供深入的数据洞察。以下是各个功能模块的详细介绍:

  1. 招聘数据可视化大屏
    热门城市:展示招聘活动最活跃的城市,帮助用户了解哪些城市的就业机会更多。
    中国地图:在地图上以不同颜色或标记展示全国范围内的招聘热度分布,提供地理空间上的数据可视化。
    行业人才需求:展示不同行业对人才的需求情况,帮助用户了解哪些行业正在快速发展,哪些行业对人才的需求量大。
    词云图:通过词云展示招聘职位描述中的高频词汇,快速捕捉市场热点和技能需求。
    饼状图:可能用于展示不同职位类别、学历层次或行业间的比例分布,提供宏观数据概览。

技术栈:
Python语言、Flask框架、MySQL数据库、Echarts可视化、HTML

2、项目界面

(1)招聘数据可视化大屏----热门城市、中国地图、行业人才需求、词云图、饼状图

在这里插入图片描述

(2)学历统计分析

在这里插入图片描述

(3)热门岗位排行分析

在这里插入图片描述

(4)招聘数据列表
在这里插入图片描述

(5)个人中心
在这里插入图片描述

(6)注册登录

在这里插入图片描述

3、项目说明

这个系统是一个基于Python、Flask框架、MySQL数据库以及Echarts可视化技术的招聘数据分析与可视化平台。它整合了招聘市场的多维度数据,通过直观的图表和交互界面为用户提供深入的数据洞察。以下是各个功能模块的详细介绍:

  1. 招聘数据可视化大屏
    热门城市:展示招聘活动最活跃的城市,帮助用户了解哪些城市的就业机会更多。
    中国地图:在地图上以不同颜色或标记展示全国范围内的招聘热度分布,提供地理空间上的数据可视化。
    行业人才需求:展示不同行业对人才的需求情况,帮助用户了解哪些行业正在快速发展,哪些行业对人才的需求量大。
    词云图:通过词云展示招聘职位描述中的高频词汇,快速捕捉市场热点和技能需求。
    饼状图:可能用于展示不同职位类别、学历层次或行业间的比例分布,提供宏观数据概览。
  2. 学历统计分析
    分析不同学历层次(如本科、硕士、博士等)在招聘市场中的竞争力,包括各学历层次的岗位分布、薪资水平等,帮助用户了解学历对就业的影响。
  3. 热门岗位排行分析
    列出当前市场上最热门的岗位及其相关数据分析,如需求量、平均薪资、学历要求等,帮助求职者定位职业方向,也为企业招聘提供参考。
  4. 招聘数据列表
    提供详细的招聘数据列表,包括岗位名称、公司名称、工作地点、薪资范围、发布时间等详细信息,用户可以根据条件筛选查看感兴趣的招聘信息。
  5. 个人中心
    为用户提供个性化的空间,包括个人信息管理、简历上传与编辑、投递记录查看、收藏岗位管理等功能,提升用户体验和参与度。
  6. 注册登录
    实现用户注册与登录功能,确保用户数据的安全性和隐私保护。注册后的用户可以享受到更多个性化服务和数据定制功能。
    技术栈说明
    Python语言:作为后端开发语言,负责数据处理、业务逻辑实现和与数据库的交互。
    Flask框架:一个轻量级的Web应用框架,用于构建系统的后端服务,提供API接口和页面渲染。
    MySQL数据库:存储系统所需的所有数据,包括用户信息、招聘信息、统计数据等。
    Echarts可视化:一个强大的数据可视化库,用于生成各种图表(如地图、饼图、词云等),提高数据的可读性和直观性。
    HTML:用于构建系统的前端页面,结合CSS和JavaScript实现页面的布局和交互。
    综上所述,这个系统是一个集数据收集、分析、可视化于一体的招聘数据分析平台,旨在通过直观的数据展示和深入的分析,帮助求职者、招聘方以及行业研究者更好地了解市场动态,做出更加明智的决策。

4、核心代码

from flask import Flask,request,url_for, jsonify
import pymysql
from flask_cors import *
import pandas as pd
from collections import Counter

app = Flask(__name__)
app.config['JSON_AS_ASCII'] = False
CORS(app, supports_credentials=True)

from flask.json import JSONEncoder as _JSONEncoder

class JSONEncoder(_JSONEncoder):
    def default(self, o):
        import decimal
        if isinstance(o, decimal.Decimal):

            return float(o)

        super(JSONEncoder, self).default(o)
app.json_encoder = JSONEncoder

@app.route('/page1',methods=['GET'])
def page1():
    cursor = conn.cursor()
    cursor.execute(sql)
    values = cursor.fetchall()
    jsondata = {}
    xd = []
    yd = ['计算机软件','互联网','工业自动化','金融','通信']
    datas = []
    for index,i in enumerate(values):
        mydict = {}
        mydict["value"] = i[0]
        mydict["name"] = yd[index]
        datas.append(mydict)
        xd.append(i[0])
    jsondata['categories'] = yd
    jsondata['data'] = xd
    jsondata['datas'] = datas
    j = jsonify(jsondata)
    cursor.close()
    conn.close()
    return j

@app.route('/page2',methods=['GET'])
def page2():

    cursor = conn.cursor()
    cursor.execute(sql)
    values = cursor.fetchall()
    jsondata = {}
    datas = []
    for index,i in enumerate(values):
        mydict = {}
        mydict["value"] = i[0]
        mydict["name"] = i[1]
        datas.append(mydict)
    jsondata['datas'] = datas
    j = jsonify(jsondata)
    cursor.close()
    conn.close()
    return j

@app.route('/page3',methods=['GET'])
def page3()

    cursor = conn.cursor()
    cursor.execute(sql)
    values = cursor.fetchall()
    jsondata = {}
    xd = []
    for index,i in enumerate(values):
        xd.append(i[0])
    jsondata['data'] = xd
    j = jsonify(jsondata)
    cursor.close()
    conn.close()
    return j
    
if __name__ == "__main__":
   app.run(port=5000)

5、源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,查看【用户名】、【专栏名称】就可以找到我啦🍅

感兴趣的可以先收藏起来,点赞、关注不迷路,下方查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值