博主介绍:✌全网粉丝10W+,前互联网大厂软件研发、集结硕博英豪成立工作室。专注于计算机相关专业项目实战6年之久,选择我们就是选择放心、选择安心毕业✌
> 🍅想要获取完整文章或者源码,或者代做,拉到文章底部即可与我联系了。🍅🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅
1、毕业设计:2025年计算机专业毕业设计选题汇总(建议收藏)✅
2、大数据毕业设计:2025年选题大全 深度学习 python语言 JAVA语言 hadoop和spark(建议收藏)✅
🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅
1、项目介绍
这个系统是一个基于Python、Flask框架、MySQL数据库以及Echarts可视化技术的招聘数据分析与可视化平台。它整合了招聘市场的多维度数据,通过直观的图表和交互界面为用户提供深入的数据洞察。以下是各个功能模块的详细介绍:
- 招聘数据可视化大屏
热门城市:展示招聘活动最活跃的城市,帮助用户了解哪些城市的就业机会更多。
中国地图:在地图上以不同颜色或标记展示全国范围内的招聘热度分布,提供地理空间上的数据可视化。
行业人才需求:展示不同行业对人才的需求情况,帮助用户了解哪些行业正在快速发展,哪些行业对人才的需求量大。
词云图:通过词云展示招聘职位描述中的高频词汇,快速捕捉市场热点和技能需求。
饼状图:可能用于展示不同职位类别、学历层次或行业间的比例分布,提供宏观数据概览。
技术栈:
Python语言、Flask框架、MySQL数据库、Echarts可视化、HTML
2、项目界面
(1)招聘数据可视化大屏----热门城市、中国地图、行业人才需求、词云图、饼状图
(2)学历统计分析
(3)热门岗位排行分析
(4)招聘数据列表
(5)个人中心
(6)注册登录
3、项目说明
这个系统是一个基于Python、Flask框架、MySQL数据库以及Echarts可视化技术的招聘数据分析与可视化平台。它整合了招聘市场的多维度数据,通过直观的图表和交互界面为用户提供深入的数据洞察。以下是各个功能模块的详细介绍:
- 招聘数据可视化大屏
热门城市:展示招聘活动最活跃的城市,帮助用户了解哪些城市的就业机会更多。
中国地图:在地图上以不同颜色或标记展示全国范围内的招聘热度分布,提供地理空间上的数据可视化。
行业人才需求:展示不同行业对人才的需求情况,帮助用户了解哪些行业正在快速发展,哪些行业对人才的需求量大。
词云图:通过词云展示招聘职位描述中的高频词汇,快速捕捉市场热点和技能需求。
饼状图:可能用于展示不同职位类别、学历层次或行业间的比例分布,提供宏观数据概览。 - 学历统计分析
分析不同学历层次(如本科、硕士、博士等)在招聘市场中的竞争力,包括各学历层次的岗位分布、薪资水平等,帮助用户了解学历对就业的影响。 - 热门岗位排行分析
列出当前市场上最热门的岗位及其相关数据分析,如需求量、平均薪资、学历要求等,帮助求职者定位职业方向,也为企业招聘提供参考。 - 招聘数据列表
提供详细的招聘数据列表,包括岗位名称、公司名称、工作地点、薪资范围、发布时间等详细信息,用户可以根据条件筛选查看感兴趣的招聘信息。 - 个人中心
为用户提供个性化的空间,包括个人信息管理、简历上传与编辑、投递记录查看、收藏岗位管理等功能,提升用户体验和参与度。 - 注册登录
实现用户注册与登录功能,确保用户数据的安全性和隐私保护。注册后的用户可以享受到更多个性化服务和数据定制功能。
技术栈说明
Python语言:作为后端开发语言,负责数据处理、业务逻辑实现和与数据库的交互。
Flask框架:一个轻量级的Web应用框架,用于构建系统的后端服务,提供API接口和页面渲染。
MySQL数据库:存储系统所需的所有数据,包括用户信息、招聘信息、统计数据等。
Echarts可视化:一个强大的数据可视化库,用于生成各种图表(如地图、饼图、词云等),提高数据的可读性和直观性。
HTML:用于构建系统的前端页面,结合CSS和JavaScript实现页面的布局和交互。
综上所述,这个系统是一个集数据收集、分析、可视化于一体的招聘数据分析平台,旨在通过直观的数据展示和深入的分析,帮助求职者、招聘方以及行业研究者更好地了解市场动态,做出更加明智的决策。
4、核心代码
from flask import Flask,request,url_for, jsonify
import pymysql
from flask_cors import *
import pandas as pd
from collections import Counter
app = Flask(__name__)
app.config['JSON_AS_ASCII'] = False
CORS(app, supports_credentials=True)
from flask.json import JSONEncoder as _JSONEncoder
class JSONEncoder(_JSONEncoder):
def default(self, o):
import decimal
if isinstance(o, decimal.Decimal):
return float(o)
super(JSONEncoder, self).default(o)
app.json_encoder = JSONEncoder
@app.route('/page1',methods=['GET'])
def page1():
cursor = conn.cursor()
cursor.execute(sql)
values = cursor.fetchall()
jsondata = {}
xd = []
yd = ['计算机软件','互联网','工业自动化','金融','通信']
datas = []
for index,i in enumerate(values):
mydict = {}
mydict["value"] = i[0]
mydict["name"] = yd[index]
datas.append(mydict)
xd.append(i[0])
jsondata['categories'] = yd
jsondata['data'] = xd
jsondata['datas'] = datas
j = jsonify(jsondata)
cursor.close()
conn.close()
return j
@app.route('/page2',methods=['GET'])
def page2():
cursor = conn.cursor()
cursor.execute(sql)
values = cursor.fetchall()
jsondata = {}
datas = []
for index,i in enumerate(values):
mydict = {}
mydict["value"] = i[0]
mydict["name"] = i[1]
datas.append(mydict)
jsondata['datas'] = datas
j = jsonify(jsondata)
cursor.close()
conn.close()
return j
@app.route('/page3',methods=['GET'])
def page3()
cursor = conn.cursor()
cursor.execute(sql)
values = cursor.fetchall()
jsondata = {}
xd = []
for index,i in enumerate(values):
xd.append(i[0])
jsondata['data'] = xd
j = jsonify(jsondata)
cursor.close()
conn.close()
return j
if __name__ == "__main__":
app.run(port=5000)
5、源码获取方式
🍅由于篇幅限制,获取完整文章或源码、代做项目的,查看【用户名】、【专栏名称】就可以找到我啦🍅
感兴趣的可以先收藏起来,点赞、关注不迷路,下方查看👇🏻获取联系方式👇🏻