博主介绍:✌全网粉丝10W+,前互联网大厂软件研发、集结硕博英豪成立工作室。专注于计算机相关专业项目实战6年之久,选择我们就是选择放心、选择安心毕业✌
> 🍅想要获取完整文章或者源码,或者代做,拉到文章底部即可与我联系了。🍅🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅
1、毕业设计:2025年计算机专业毕业设计选题汇总(建议收藏)✅
2、大数据毕业设计:2025年选题大全 深度学习 python语言 JAVA语言 hadoop和spark(建议收藏)✅
🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅
1、项目介绍
技术栈:
Python语言、Django框架、MySQL数据库、requests爬虫、当当图书网、爬虫+清洗+数据分析+Echarts可视化
图书数据分析大屏+爬虫+清洗+可视化 、
python图书数据分析大屏+爬虫+清洗+可视化 当当网 书籍数据分析
2、项目界面
(1)数据可视化分析大屏
(2)不同类型下价格区间数量占比分析
(3)不同类型下出版社数量分析占比
(4)图书信息、图书列表
(5)后台数据管理
(7)功能模块菜单
(8)数据采集爬取
3、项目说明
1. 数据可视化分析大屏
功能描述:
这是项目的主界面,通过 Echarts 可视化工具将图书数据以图表形式展示,包括价格分布、出版社占比、图书类型等关键信息。用户可以直观地了解图书市场的整体情况。
实现方式:
- 使用 Python 的 Django 框架搭建后端服务,从 MySQL 数据库中获取数据。
- 前端通过 Echarts 绘制图表,将数据以直观的可视化形式展示。
- 数据实时更新,用户可以通过筛选条件(如图书类型、价格区间)动态调整图表内容。
2. 不同类型下价格区间数量占比分析
功能描述:
该模块分析不同图书类型(如小说、科技、教育等)在各个价格区间内的数量占比,帮助用户了解不同类型图书的定价分布。
实现方式:
- 从数据库中提取图书价格和类型数据。
- 使用 Python 的数据分析库(如 Pandas)对数据进行清洗和分类。
- 通过 Echarts 绘制饼图或柱状图,展示不同价格区间内的图书数量占比。
3. 不同类型下出版社数量分析占比
功能描述:
分析不同图书类型中各出版社的图书数量占比,帮助用户了解哪些出版社在特定领域更具影响力。
实现方式:
- 从数据库中提取图书类型和出版社信息。
- 使用 Pandas 对数据进行分组和统计。
- 使用 Echarts 绘制饼图或柱状图,展示各出版社在不同类型的图书市场中的占比情况。
4. 图书信息、图书列表
功能描述:
展示图书的详细信息列表,用户可以查看每本书的名称、作者、出版社、价格、评分等信息。
实现方式:
- 从数据库中查询图书信息,并通过 Django 模板渲染到前端页面。
- 提供搜索和筛选功能,用户可以根据书名、作者、类型等条件快速查找图书。
- 使用分页技术优化用户体验,避免单页加载过多数据。
5. 后台数据管理
功能描述:
管理员可以通过后台管理系统对图书数据进行增删改查操作,确保数据的准确性和完整性。
实现方式:
- 使用 Django 的 Admin 模块搭建后台管理系统。
- 定义图书数据模型(如 Book),并配置相应的管理界面。
- 提供数据导入和导出功能,方便管理员批量处理数据。
6. 功能模块菜单
功能描述:
提供项目的导航菜单,方便用户快速切换到不同的功能模块,如数据可视化、图书列表、数据管理等。
实现方式:
- 使用前端框架(如 Bootstrap)设计导航栏。
- 通过路由功能实现模块之间的跳转。
- 根据用户权限动态显示菜单项,确保用户只能访问其有权限的功能模块。
7. 数据采集爬取
功能描述:
通过爬虫技术从当当网等图书网站采集图书数据,并清洗后存储到 MySQL 数据库中,为后续的分析和可视化提供数据支持。
实现方式:
- 使用 Python 的
requests
库和BeautifulSoup
库编写爬虫脚本。 - 定期运行爬虫任务,获取最新的图书数据。
- 使用 Pandas 对采集的数据进行清洗和预处理,去除无效数据或重复记录。
- 将清洗后的数据存储到 MySQL 数据库中,供前端调用。
4、核心代码
import requests
from bs4 import BeautifulSoup
import time
def fun(find,type=None):
if find:
if type:
try:
return find[0].get(type).strip().replace('\t','').replace('\n','')
except:
return ""
return find[0].text.strip().replace('\t','').replace('\n','')
def getData(url,data,category):
response = requests.get(url=url,headers=headers)
soup = BeautifulSoup(response.text,'lxml')
li_list = soup.select('#search_nature_rg ul.bigimg li')
for li in li_list:
title = fun(li.select('a.pic'),'title').split('(')[0]
author = li.select('p.search_book_author span')[0].text.strip().replace('\t','').replace('\n','')
createTime = li.select('p.search_book_author span')[1].text.strip().replace('\t','').replace('\n','')
press = li.select('p.search_book_author span')[2].text.strip().replace('\t','').replace('\n','')
now_price = fun(li.select('p.price span.search_now_price'))
pre_price = fun(li.select('p.price span.search_pre_price'))
discount = fun(li.select('p.price span.search_discount'))
detail = fun(li.select('p.detail'))
star = fun(li.select('p.search_star_line span.search_star_black span'),'style')
comment_num = fun(li.select('p.search_star_line a.search_comment_num'))
img_url = fun(li.select('.pic img'),'data-original')
if img_url:
img_url = "http:" + img_url
book_url = fun(li.select('p.name a'),'href')
if book_url:
book_url = "http:" + book_url
addTime = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime())
data.append([category,title,author,createTime,press,now_price,pre_price,discount,detail,star,comment_num,img_url,book_url,addTime])
def writeData(data):
with open('./data.csv','w+',encoding='utf-8') as fp:
fp.write("\t".join(['category','title','author','createTime','press','now_price','pre_price','discount','detail','star','comment_num','img_url','book_url','addTime'])+'\n')
for item in data:
fp.write("\t".join([str(i) for i in item])+'\n')
if __name__ == '__main__':
base = 'http://category.dangdang.com/pg{}-cp01.{}.00.00.00.00.html'
data = []
# 这个设置爬取多少页
max_page = 2
category_code = {'成功/励志':'21','艺术':'07','历史':'36','文学':'05','医学':'56','计算机/网络':'54','经济':'25','社会科学':'30','科普读物':'52','时尚/美妆':'11','哲学/宗教':'28','建筑':'55'}
for category in category_code:
for page in range(max_page):
url = base.format(page+1,category_code[category])
try:
getData(url,data,category)
print('类别{}第{}页爬取成功!'.format(category,page+1))
time.sleep(1)
except:
print('类别{}第{}页爬取失败!'.format(category,page+1))
time.sleep(15)
writeData(data)
5、源码获取方式
🍅由于篇幅限制,获取完整文章或源码、代做项目的,查看【用户名】、【专栏名称】就可以找到我啦🍅
感兴趣的可以先收藏起来,点赞、关注不迷路,下方查看👇🏻获取联系方式👇🏻