股票预测 股价预测 Arima预测算法(时间序列预测算法) python股票数据分析预测系统 Flask 框架 大数据毕业设计(源码)✅

博主介绍:✌全网粉丝10W+,前互联网大厂软件研发、集结硕博英豪成立工作室。专注于计算机相关专业项目实战6年之久,选择我们就是选择放心、选择安心毕业✌
> 🍅想要获取完整文章或者源码,或者代做,拉到文章底部即可与我联系了。🍅

点击查看作者主页,了解更多项目!

🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅

1、毕业设计:2025年计算机专业毕业设计选题汇总(建议收藏)✅

2、大数据毕业设计:2025年选题大全 深度学习 python语言 JAVA语言 hadoop和spark(建议收藏)✅

🍅感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业 。🍅

1、项目介绍

技术栈:
python语言、Flask框架、vue框架、实时股票数据、Echarts可视化、Arima预测算法(时间序列预测算法)、IG507金融数据接口

2、项目界面

(1)股票数据K线图

在这里插入图片描述

(2)股票预测

在这里插入图片描述

在这里插入图片描述

(3)日K线图、周K线图、月K线图

在这里插入图片描述

(4)股市风向标:交易所公告、排行榜

在这里插入图片描述

(5)系统首页

在这里插入图片描述

(6)股票信息

在这里插入图片描述

3、项目说明

要实现一个股票数据分析预测系统,结合Flask框架、Vue框架、实时股票数据、Echarts可视化、Arima预测算法和IG507金融数据接口,你可以按照以下步骤来操作:

搭建后端(使用Flask框架):

创建一个Flask应用程序,用于处理前端请求并与数据库、IG507金融数据接口进行交互。
实现路由来获取实时股票数据,并将数据传递给前端。
编写Arima预测算法的代码,用于对股票数据进行时间序列预测。
将预测结果通过API返回给前端。
搭建前端(使用Vue框架和Echarts可视化):

摘 要

随着金融市场的发展,投资者对及时、准确的数据分析需求不断上升。许多金融服务机构在信息采集和数据处理上仍依赖于人工和传统的方式,导致反应速度慢、信息滞后。缺乏高效的数据分析工具,使得投资决策容易受到市场波动影响,无法及时调整策略,从而增加了投资风险。整体来看,现有系统未能充分利用实时数据,缺乏直观的可视化分析功能,难以满足用户的多样化需求。
本系统的前端采用Vue框架,后端使用Flask框架,数据存储用MySQL。系统的主要功能有股票列表、股市风向标、龙虎榜和用户信息管理。股票列表模块支持股票的搜索和模糊查询,提供实时交易数据和公司信息;股市风向标模块展示停牌信息、深交易所和上交易所公告,还有周、月涨跌排行榜;龙虎榜模块列出跌幅偏离、涨幅偏离和振幅异常的证券,监控连续三日内跌幅累计达20%的证券和异常波动停牌股票;用户信息管理模块允许用户查看个人信息并进行退出操作。该系统能提高数据获取与分析的效率,用户能更好地进行市场决策,提升投资回报。

关键词:股票数据采集分析,Flask,Vue,MySQL

本研究围绕股票信息系统的设计与实现进行了深入探讨。系统目标明确,为用户提供实时股票数据查询、数据分析与管理功能。系统设计充分考虑用户需求,采用模块化结构,保证各个功能模块之间的高内聚性与低耦合性。用户模块设计实现了用户注册、登录、信息查询和登出功能,保证用户体验与信息安全。股票数据采集模块通过对外部API的调用,实现了对市场最新股票数据的实时获取。该模块设计合理,采用定时更新策略,保证数据库中的信息及时准确。核心代码经过严格测试,验证了其在高频请求情况下的稳定性与有效性。数据采集的成功实现为后续的数据分析提供了坚实基础。股票数据分析模块设计灵活,支持多种数据分析功能。通过对历史数据的深度挖掘,系统能够提供用户所需的投资建议与风险评估。股票数据管理模块有效整合了所有采集到的数据,提供了高效的查询与管理接口。用户可以通过该模块轻松访问股票信息,进行详细信息查看。系统设计充分考虑了数据结构与存储效率,保证在大量数据处理时的性能表现。系统测试环节,通过功能测试、性能测试与用户体验测试,系统稳定性与可靠性得到了充分证明。
股票信息系统的设计与实现达到了预期目标。各个模块功能完整,用户界面友好,操作流程简洁。系统架构合理,易于后续维护与功能扩展。系统在实际应用中表现良好。未来的工作将集中在系统功能的进一步完善与性能优化,增强用户体验,提升系统的实用性与灵活性。

4、核心代码


# coding:utf-8
# 股票信息查询逻辑处理

from common.Ig507Api import StockApi  # 开放接口
from models.StocksModel import StockModel  # 公司模型
from models.BaseModel import BaseModel
from models import db
import time


class StockService(object):

    @classmethod
    def init_all_stocks(cls):
        """
        获取市面股票最新数据,并更新数据库。数据量较大,需要花费2小时左右
        :return:
        """

        stock_list = StockApi.get_stock_list()
        for stock in stock_list:
            time.sleep(2)  # 限制请求频率
            stock_company = StockApi.get_company(stock['code'], stock['name'], stock['jys'])  # 获取公司详细信息
            sc = StockModel(code=stock_company['code'],
                            stockname=stock_company['stockname'],
                            jys=stock_company['jys'],
                            name=stock_company['name'],
                            ename=stock_company['ename'],
                            market=stock_company['market'],
                            idea=stock_company['idea'],
                            ldate=stock_company['ldate'],
                            sprice=stock_company['sprice'],
                            principal=stock_company['principal'],
                            rdate=stock_company['rdate'],
                            rprice=stock_company['rprice'],
                            instype=stock_company['instype'],
                            organ=stock_company['organ'],
                            phone=stock_company['phone'],
                            site=stock_company['site'],
                            post=stock_company['post'],
                            addr=stock_company['addr'],
                            oaddr=stock_company['oaddr'],
                            desc=stock_company['desc'])
            db.session.add(sc)
            db.session.commit()
            print(f"插入成功{sc.code}, {sc.stockname}, {sc.jys}")
        # 存储到数据库

    @classmethod
    def init_bases(cls):
        """
        更新数据库中的指数、行业、概念
        :return:
        """
        bases = StockApi.get_all_bases()
        for base in bases:
            sc = BaseModel(
                code=base['code'],
                name=base['name'],
                type1=base['type1'],
                type2=base['type2'],
                level=base['level'],
                pcode=base['pcode'],
                pname=base['pname'],
                isleaf=base['isleaf'],
            )
            db.session.add(sc)
            db.session.commit()
            print(f"更新成功 - {sc.code}, {sc.name}")
        # 存储到数据库

    @classmethod
    def init_stock_and_base(cls):
        bases = StockApi.get_all_bases()
        for base in bases[:2]:
            result = cls.query_base_by_level_and_pcode_and_type(base['level'], base['pcode'], base['type2'])
            print(result)

    @classmethod
    def query_base_by_level_and_pcode_and_type(cls, level_code: str = 0, pcode: str = None, types: str = None):
        """
        查询指数、行业、概念
        :param types: 类型
        :param pcode: 父节点
        :param level_code: 节点级别
        :return:
        """
        result = []
        if types is None:
            # 默认A股-分类板块
            types = 3
        filter_list = [BaseModel.level == level_code, BaseModel.type2 == types]
        if pcode is not None:
            filter_list.append(BaseModel.pcode == pcode)
        stock_bases = BaseModel.query.filter(*filter_list).order_by(BaseModel.level).all()
        # 转化json格式
        for item in stock_bases:
            result.append(item.to_json())
        return result

    @classmethod
    def query_stock_by_base(cls, tree_code: str = None, limit: int = 10, offset: int = 1):
        """
        根据指数、行业、概念分页查询股票
        :param tree_code:
        :param limit:
        :param offset:
        :return:
        """
        result = {'stocks': [], 'sum': 0}
        stocks = StockApi.get_stock_from_base(tree_code)
        t_stocks = []
        while len(stocks) != 0:
            t_stocks.append(stocks.pop(-1))
        if len(t_stocks) - offset <= limit:
            page_stocks = t_stocks[offset:]
        else:
            page_stocks = t_stocks[(offset - 1) * limit: offset * limit]
        result['stocks'] = page_stocks
        result['sum'] = len(t_stocks)
        return result

    @classmethod
    def query_stock_by_like(cls, stock_code: str = None, stock_name: str = None, limit: int = 10, offset: int = 1):
        """
        股票多条件模糊查询
        :param stock_code:
        :param stock_name:
        :param limit:
        :param offset:
        :return:
        """
        # 从数据库读取
        result = {'companies': [], 'sum': 0}
        companies = []
        companies_1 = StockModel.query.filter(StockModel.stockname.like("%" + stock_name + "%")).order_by(StockModel.code.asc()).limit(limit).offset(offset).all()
        companies_2 = StockModel.query.filter(StockModel.code.like("%" + stock_code + "%")).order_by(StockModel.code.asc()).limit(limit).offset(offset).all()
        companies.extend(companies_1)
        companies.extend(companies_2)
        _sum = StockModel.query.filter(StockModel.stockname.like("%" + stock_name + "%")).count()
        _sum = _sum + StockModel.query.filter(StockModel.code.like("%" + stock_code + "%")).count()
        # 转化json格式
        for item in companies:
            result['companies'].append(item.to_json())
        result['sum'] = _sum
        return result

    @classmethod
    def query_stock_company_by_code(cls, code: str):
        company = StockModel.query.filter(StockModel.code == code).first()
        if company is not None:
            return company.to_json()
        else:
            StockApi.get_company(code)



5、源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,查看【用户名】、【专栏名称】就可以找到我啦🍅

感兴趣的可以先收藏起来,点赞、关注不迷路,下方查看👇🏻获取联系方式👇🏻

股神--人工智能股票预测系统是专门为股票投资者开发的一套全新的基于人工智能技术的股票趋势预测软件平台。该软件以基因演化算法(GP)为内核对股票交易历史数据进行自动建模和学习,挖掘出股票交易大数据中隐藏的行为规律,并以此为依据对下一个股票日的最高价和最低价的涨跌趋势进行预测分析。该软件能够帮助您了解何时进入股市,何时退出股市,并在最佳的时机买进或卖出股票,从而获取最大的利润和收益。 支持6种典型的股票类别:上证指数、上证A股、上证B股、深证指数、深证A股和深证B股。 精确的股票预测信息(如上涨、下跌或持平)和买卖推荐信息(如买入、卖出、持股以及买入价、卖出价等)。 基因演化算法参数支持用户自定义,默认设置为种群大小:30,杂交概率:0.8,变异概率:0.1,最大运行代数:1000。 支持批量操作,如股票批量评测、模型批量训练、股票批量预测、批量增加股票代码、批量添加/撤销我的股票池等。 对大多数股票而言,最高价与最低价的涨跌趋势预测准确度达60%-80%;对部分股票而言,预测准确度最高可达90%。 仅需简单的操作即可完成股票评测、智能选股、模型训练以及股票预测等功能。 系统主界面支持从云数据库和本地数据库自动更新最优股票预测信息。 支持流行的微软Windows操作系统,如Windows 98/Me/2000/XP/Vista/7。 股神--人工智能股票预测系统既适用于专业的股票投资者,也适用于股票初学者。您可以通过股神系统轻轻松松地完成股票评测、智能选股、模型训练以及股票预测等功能,所有操作简单易懂,软件界面友好大方。
股神--人工智能股票预测系统是专门为股票投资者开发的一套全新的基于人工智能技术的股票趋势预测软件平台。该软件以基因演化算法(GP)为内核对股票交易历史数据进行自动建模和学习,挖掘出股票交易大数据中隐藏的行为规律,并以此为依据对下一个股票日的最高价和最低价的涨跌趋势进行预测分析。该软件能够帮助您了解何时进入股市,何时退出股市,并在最佳的时机买进或卖出股票,从而获取最大的利润和收益。 支持6种典型的股票类别:上证指数、上证A股、上证B股、深证指数、深证A股和深证B股。 精确的股票预测信息(如上涨、下跌或持平)和买卖推荐信息(如买入、卖出、持股以及买入价、卖出价等)。 基因演化算法参数支持用户自定义,默认设置为种群大小:30,杂交概率:0.8,变异概率:0.1,最大运行代数:1000。 支持批量操作,如股票批量评测、模型批量训练、股票批量预测、批量增加股票代码、批量添加/撤销我的股票池等。 对大多数股票而言,最高价与最低价的涨跌趋势预测准确度达60%-80%;对部分股票而言,预测准确度最高可达90%。 仅需简单的操作即可完成股票评测、智能选股、模型训练以及股票预测等功能。 系统主界面支持从云数据库和本地数据库自动更新最优股票预测信息。 支持流行的微软Windows操作系统,如Windows 98/Me/2000/XP/Vista/7。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值