1.【题目描述】 最长公共子序列
2.【思路】 参考算法导论。要找出字符串A、B的最长公共子序列,用Ai表示字符串A的前i(i>=1)个字符组成的子串,L[i][j]表示字符串Ai和Bj的最长公共子序列的长度,则L是一个(A.size()+1)*(B.size()+1)的二维数组。首先初始化L,即令L[0][j]=0, j=0,1,2,...,B.size(),L[i][0]=0,i=0,1,2,...,A.size()。对于i>0且j>0则有:
根据上述动态规划递归方程可以用动态规划算法解决此问题。
3. 【代码】
class Solution {
public:
/**
* @param A, B: Two strings.
* @return: The length of longest common subsequence of A and B.
*/
int longestCommonSubsequence(string A, string B) {
// write your code here
if(A.size()==0||B.size()==0) {
return 0;
}
vector<int> ele(B.size()+1,0);
vector<vector<int>> res(A.size()+1,ele);
int length=0;
for(int i=1;i<=A.size();++i) {
for(int j=1;j<=B.size();++j) {
if(A[i-1]==B[j-1]) {
res[i][j]=res[i-1][j-1]+1;
}
else {
res[i][j]=res[i][j-1]>=res[i-1][j]?res[i][j-1]:res[i-1][j];
}
length=length>=res[i][j]?length:res[i][j];
}//for
}//for
return length;
}
};