动态规划_最长公共子序列_1

1.【题目描述】    最长公共子序列

2.【思路】    参考算法导论。要找出字符串A、B的最长公共子序列,用Ai表示字符串A的前i(i>=1)个字符组成的子串,L[i][j]表示字符串Ai和Bj的最长公共子序列的长度,则L是一个(A.size()+1)*(B.size()+1)的二维数组。首先初始化L,即令L[0][j]=0, j=0,1,2,...,B.size(),L[i][0]=0,i=0,1,2,...,A.size()。对于i>0且j>0则有:


 根据上述动态规划递归方程可以用动态规划算法解决此问题。

3. 【代码】    

class Solution {
public:
    /**
     * @param A, B: Two strings.
     * @return: The length of longest common subsequence of A and B.
     */
    int longestCommonSubsequence(string A, string B) {
        // write your code here
        if(A.size()==0||B.size()==0) {
            return 0;
        }
        vector<int> ele(B.size()+1,0);
        vector<vector<int>> res(A.size()+1,ele);
        int length=0;
        for(int i=1;i<=A.size();++i) {
            for(int j=1;j<=B.size();++j) {
                if(A[i-1]==B[j-1]) {
                    res[i][j]=res[i-1][j-1]+1;
                }
                else {
                    res[i][j]=res[i][j-1]>=res[i-1][j]?res[i][j-1]:res[i-1][j];
                }
                length=length>=res[i][j]?length:res[i][j];
            }//for
        }//for
        return length;
    }
};
 



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值