学习笔记(1)

博客围绕编写递归函数输出n个元素的所有子集展开。给出两种实现思路,一是递归求子集但未处理重复问题,二是利用二进制对应取子集,并分别给出代码示例。

题目:试编写一个递归函数,用来输出n 个元素的所有子集。例如,三个元素{a, b, c} 的所有
子集是:{ }(空集),{a}, {b}, {c}, {a, b}, {a, c}, {b, c} 和{a, b, c}。

分析:

其一,{a, b}, {a, c}, {b, c}为 {a, b, c}去处各个元素得之,可递归求之,不过会有重复,需去除重复

代码:#include <iostream>
using namespace std;

char b[]={'a','b','c','d'};
int const size=4;

template <class T>
void sub(T list[],int i,int j)
{
 T listback[size];

 if(j==i)
  return;
 else
    for(int temp=i;temp<=j;temp++)
 {  
  int num=0;
  for(int k=i;k<=j;k++)
  if(k!=temp)
  {
   cout<<list[k]<<" ";
         listback[num]=list[k];
     num++;}
  cout<<endl;

     
        sub(listback,i,j-1);
 }

}
double xsum(double m,double n)
{
 double a=1;
 int temp=n;
 for(int i=1;i<=temp;i++)
 {   a*=m/n;
     m-=1;
  n-=1;
 }
 return a;
}


int main()
{
 sub(b,0,3);
 
}  没有去除重复 懒…………

其二:由二进制可对应取其子集

代码:#include <iostream>
using namespace std;
int temp[4];
char a[4]={'a','b','c','d'};

void NewSub(int *temp)
{   
  int change=0;
     for(int i=0;i<4;i++)
   if(temp[i]==2)
   {temp[i]=0;
    temp[i-1]++;
    change=1;}
     if(change==0)
   return;
  else
     NewSub(temp);
}

void add(int *temp)
{
  temp[3]++;
}

int main()
{

for(int j=1;j<=15;j++)
{
 
 for(int i=0;i<4;i++)
   temp[i]=0;

     for( i=0;i<j;i++)
  {add(temp);
      NewSub(temp);}

  for( i=0;i<4;i++)
  {
   if(temp[i]==1)
   cout<<a[i]<<" ";
  
  }
   cout<<endl;
}

}

//学校的blog需要验证,无限郁闷中…………

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值