OJ答案查询平台

对于河南工程学院在线Judge系统上的题目求解,针对编号为1160的问题,虽然具体的题目描述未给出,但从常见的编程练习平台模式来看,这类问题通常涉及算法设计与数据结构应用。基于此背景,下面提供一种可能适用于该题目的解决方案框架。 ### 可能的题目分析 假设题目要求计算组合数\(C(n, k)\),即从n个不同元素中取出k个元素的组合数目,在不考虑具体输入范围的情况下,可以采用动态规划的方法来优化原始递归版本的时间复杂度和空间效率[^1]。 ### 动态规划解决方法 为了提高程序执行效率并避免重复计算子问题的结果,建议使用二维数组`dp[i][j]`存储中间结果,其中`dp[i][j]`表示从i个不同元素里选取j个元素的方式总数: - 当j等于0时,任何数量的不同元素选0个只有一种情况; - 如果要取的数量超过了可选项,则不存在这样的选择方式; - 对于其他情形,可以通过前一行的数据推导得出当前行的数据。 ```c #include <stdio.h> #define MAXN 1005 // 假设最大值不超过1000 int dp[MAXN][MAXN]; void initCombinationNumber(){ int i,j; for(i = 0 ; i < MAXN ; ++i){ dp[i][0]=1; // C(i,0)=1 dp[i][i]=1; // C(i,i)=1 } for(i = 1 ; i < MAXN ; ++i) for(j = 1 ; j <= i ; ++j) dp[i][j]=(dp[i-1][j]+dp[i-1][j-1]); } int main(){ int n,k; scanf("%d%d",&n,&k); initCombinationNumber(); printf("%d\n",dp[n][k]); return 0; } ``` 上述代码实现了预处理所有小于等于设定上限(MAXN)范围内组合数值的功能,并能够快速查询任意给定参数下的组合数结果。这种方法不仅提高了时间性能,还减少了函数调用栈溢出的风险。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值