正态分布随机数列的期望与方差分布(Student`s Theorem)

X 1 , ⋯   , X n ∼ iid N ( μ , σ 2 ) X_1,\cdots,X_n \sim \text{iid} N(\mu,\sigma^2) X1,,XniidN(μ,σ2)

  1. X ˉ ∼ N ( μ , σ 2 n ) \bar X \sim N(\mu, \dfrac{\sigma^2}{n}) XˉN(μ,nσ2)
  2. ∑ i = 1 n ( X i − X ˉ ) 2 ∼ σ 2 χ 2 ( n − 1 ) \sum_{i=1}^n (X_i-\bar X)^2 \sim \sigma^2 \chi^2(n-1) i=1n(XiXˉ)2σ2χ2(n1)
  3. X ˉ \bar X Xˉ ∑ i = 1 n ( X i − X ˉ ) 2 \sum_{i=1}^n (X_i-\bar X)^2 i=1n(XiXˉ)2相互独立

证明:
X ⃗ = [ X 1 , ⋯   , X n ] ⊤ \vec X = [X_1,\cdots,X_n]^\top X =[X1,,Xn]
构造正交矩阵 A \mathbf A A
A = [ 1 n ⋯ 1 n ⋯ ⋯ ⋯ ] A = \begin{bmatrix} \dfrac{1}{\sqrt n} & \cdots & \dfrac{1}{\sqrt n} \\ \cdots & \cdots & \cdots \end{bmatrix} A=n 1n 1
满足 A = [ a ⃗ 1 , ⋯   , a ⃗ n ] A=[\vec a_1, \cdots, \vec a_n] A=[a 1,,a n] a ⃗ 1 + ⋯ + a ⃗ n = [ n , 0 , ⋯   , 0 ] ⊤ \vec a_1 + \cdots + \vec a_n = [\sqrt n,0,\cdots,0]^\top a 1++a n=[n ,0,,0]
Y ⃗ = A X ⃗ \vec Y = \mathbf A \vec X Y =AX
于是我们有 Y 2 , ⋯   , Y n ∼ iid N ( 0 , σ 2 ) Y_2,\cdots,Y_n \sim \text{iid} N(0,\sigma^2) Y2,,YniidN(0,σ2)
这时,
X ˉ = 1 n Y 1 \bar X = \dfrac{1}{\sqrt n} Y_1 Xˉ=n 1Y1
∑ i = 1 n ( X i − X ˉ ) 2 = ( ∑ i = 1 n X i 2 ) − n X ˉ 2 = ( ∑ i = 1 n Y i 2 ) − Y 1 2 = ∑ i = 2 n Y i 2 ∼ σ 2 χ 2 ( n − 1 ) \begin{aligned} \sum_{i=1}^n (X_i-\bar X)^2 = & \left( \sum_{i=1}^n X_i^2 \right) - n \bar{X}^2 \\ = & \left( \sum_{i=1}^n Y_i^2 \right) - Y_1^2 \\ = & \sum_{i=2}^n Y_i^2 \sim \sigma^2 \chi^2(n-1) \end{aligned} i=1n(XiXˉ)2===(i=1nXi2)nXˉ2(i=1nYi2)Y12i=2nYi2σ2χ2(n1)
由于 Y 1 , ⋯   , Y n Y_1,\cdots,Y_n Y1,,Yn独立同分布,故 Y 1 Y_1 Y1 ∑ i = 2 n Y i 2 \sum_{i=2}^n Y_i^2 i=2nYi2相互独立,故 X ˉ \bar X Xˉ ∑ i = 1 n ( X i − X ˉ ) 2 \sum_{i=1}^n (X_i-\bar X)^2 i=1n(XiXˉ)2相互独立

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值