题目描述
地上有一个m行和n列的方格。一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于k的格子。 例如,当k为18时,机器人能够进入方格(35,37),因为3+5+3+7 = 18。但是,它不能进入方格(35,38),因为3+5+3+8 = 19。请问该机器人能够达到多少个格子?
C++实现:
class Solution {
public:
int movingCount(int threshold, int rows, int cols)
{
bool *flag = new bool[rows*cols];
for(int i = 0; i < rows * cols; i ++)
flag[i] = false;
int r = 0;
r = move(threshold, 0, 0, rows, cols, flag);
return r;
}
int move(int ts, int x, int y, int m, int n, bool *f)
{
int c = 0;
if(check(ts, x, y, m, n, f))
{
f[x + y * n] = true;
c = 1 + move(ts, x + 1, y, m, n, f) + move(ts, x, y + 1, m, n, f) + move(ts, x - 1, y, m, n, f) + move(ts, x, y - 1, m, n, f);
}
return c;
}
bool check(int ts, int x, int y, int m, int n, bool *f)
{
if(num(ts, x, y) && (x < n) && (y < m) && (x >= 0) && (y >= 0) && f[x + y * n] == false)
{
return true;
}
return false;
}
bool num(int ts, int x, int y)
{
int sum = 0, t = 0;
while(x)
{
t = x % 10;
sum = sum + t;
x = x / 10;
}
while(y)
{
t = y % 10;
sum = sum + t;
y = y / 10;
}
if(sum <= ts)
return true;
else
return false;
}
};