python试刀-excel表格翻译工具

xls文件处理器

背景:

Android开发里面经常要用到国际化翻译的xml文档,不同国家的客户有不同的语言翻译的需求,一般翻译都是我们提供模板给客户那边修改后直接用上,为了客户使用的直观和方便,给客户提供的文档都是xls格式的表格,回到我们这边还需要转成xml,公司提供的都是旧版2.0+版本的python文件进行转换,我不想换低版本的pycharm,就用高版本的开发pycharm3.9平台上,做一个带语言翻译的和xls转xml的图形界面工具。
在这里插入图片描述

我使用PyQt5来制造图形界面,可以安装插件QTdesigner来设计图形界面生成UI文件,PyUIC把UI文件转换成py文件,在主程序main里面调用生成相应的界面。具体见代码。

功能分析:

需要读取,显示(可选择,编辑)和保存xls文档里面的内容;
提供不同的翻译平台,如果数量过多,使用多线程;
提供转换成xml文档的功能,可以选择具体的列做键或者值。
xls文档处理:
python的基本API里面有提供读取xls文档的xlrd,保存xls文档的xlwt

open_file

//读取操作
def readXls(strpath=""):
    # print(strpath)
    global workbook
    if strpath[1] == "":
        return
    workbook = xlrd.open_workbook_xls(strpath[0][0])
    table = workbook.sheets()[0]
    # 按行读取
    tableWidget.setColumnCount(table.ncols)
    tableWidget.setRowCount(table.nrows)
    for i in range(table.nrows):
        # print(table.row_values(i))
        for j in range(table.ncols):
            value = table.cell(i, j).value
            if isinstance(value, float):
                value = str(int(value))
            tableWidget.setItem(i, j, QTableWidgetItem(value))
    return table



![save_file](https://img-blog.csdnimg.cn/b75d2da117b64ed1b60cc50d5f178f45.png#pic_center)

//保存操作
def writeXls(strpath=""):
    global workbook
    save_book = xlwt.Workbook('utf-8')
    sheet = save_book.add_sheet(workbook.sheet_names()[0])
    oldsheet = workbook.sheets()[0]
    for i in range(oldsheet.nrows):
        for j in range(oldsheet.ncols):
            sheet.write(i, j, tableWidget.item(i, j).text())
            # print(oldsheet.cell(i, j).value)
    # print(strpath)
    try:
        save_book.save(strpath[0])
    except Exception as e:
        showdialog("失败", e.args[0])
        return
    finally:
        showdialog("注意", "文件保存成功!")

tableWidget是一种可以编辑的表格控件,先把读取的数据写进去,可以实时修改,后面需要保存再提取数据。

语言翻译:
我这里使用了2种API,百度翻译和谷歌翻译,百度翻译需要VIP账号,代码里面的账号没有钱,暂时用不了,需要的人可以自己更换自己的账号来使用,谷歌翻译比百度翻译好用,免费高效,建议直接使用默认的谷歌翻译。都有提供主流语言和全部语言2种模式。

添加完文件后,可以再下面tablewidget容器里面左击或者加拖动鼠标来选择你要翻译的内容。

translates_xls

看看每个步骤我们做了哪些操作:

1.选择区域:

这个比较简单,tableWidget能自己检测到被选定的区域,我们只需把里面的内容遍历出来后传给翻译方法进行统一的翻译。

translate_list = []
table = workbook.sheets()[0]
for i in range(len(tableWidget.selectedItems())):
    input_content = table.cell(tableWidget.selectedItems()[i].row(), tableWidget.selectedItems()[i].column()).value
    # 去空处理
    if len(input_content.strip()) > 0:
        tableWidget.selectedItems()[i].setText(input_content)
        translate_list.append(tableWidget.selectedItems()[i])

2.选择目的语言:

我选择一个全局的变量来标记选中后的语言:

def selectTargetLanguage():
    data = readLanguageJson(mainView.main_ui.toAllLanguage.isChecked(), mainView.main_ui.toBaidu.isChecked())
    global targetLanguage
    targetLanguage = data[mainView.main_ui.comboBox.currentIndex()]['LangCultureName']

通过comboBox里面的选中索引值去它的数据集合里面拿对应语言缩写,赋值给全局变量targetLanguage。

3.点击翻译按键:

python爬虫做翻译工作要避免被目的网站察觉,我们需要使用ip代理,如果数量庞大的网络请求(数量大于10),使用多线程能提高效率,用户体验会更好。

3.1动态代理IP获取

获取代理IP

def getProxyAddress():
    proxies = []
    try:
        # 网站地址
        url = 'http://www.66ip.cn/index.html'
        head = {  # 模拟浏览器头部信息,向服务器发送消息
            "User-Agent": "Mozilla / 5.0(Windows NT 10.0; Win64; x64) AppleWebKit / 537.36(KHTML, like Gecko) Chrome / 80.0.3987.122  Safari / 537.36"
        }
        r = requests.get(url, headers=head)
        r.encoding = r.apparent_encoding
        dom = etree.HTML(r.text)
        url_path = '//td'
        urls = dom.xpath(url_path)
        for i in range(6):
            proxie = 'http://' + urls[i * 5 + 7].text + ':' + urls[i * 5 + 8].text
            proxies.append(proxie)
    except requests.exceptions.ConnectionError:
        showdialog("注意", "网络连接出现错误!")
        print("Error: unable to connect success")
    finally:
        # 检测代理IP是否有效
        urls = ["http://httpbin.org/ip", "https://www.baidu.com", "https://www.google.com.hk", "https://www.sohu.com",
                "https://mail.qq.com", "https://www.sina.com.cn", "https://mail.10086.cn", "https://www.sogou.com",
                "https://juejin.cn", "https://mail.sina.com.cn"]
        print('开始IP检测')
        global checkActiveIpNum
        checkActiveIpNum = 0
        global ActiveProxies
        ActiveProxies = []
        try:
            for i in range(len(proxies)):
                _thread.start_new_thread(checkActiveIp, (proxies[i], urls[i], len(proxies)))
        except Exception as e:
            print('start thread :' + e.args[0])
        finally:
            if len(proxies) > 0:
                print('开始多线程翻译')
                while True:
                    if checkActiveIpNum == len(proxies):
                        startTranslate(True)
                        break
            else:
                print('开始单线程翻译')
                startTranslate(False)

先是从免费的网站上获取到代理IP,之后一个个检测它是否有效,有效则添加到代理IP集合里面给多线程操作提供IP。如果全部无效则后续的翻译工作选择单线程翻译进行。

3.2多线程请求:

并发任务进行翻译

def multiNetworkTranslate(translateList=[]):
    num = len(ActiveProxies)
    # 转整形列表
    total_pos = []
    for i in range(len(translateList)):
        total_pos.append(i)

    temp = []
    for i in range(num):
        data = []
        for j in range(len(total_pos)):
            if total_pos[j] % num == i:
                data.append(total_pos[j])
        threads = TranslateItem(i, data)
        temp.append(threads)
    for i in range(num):
        _thread.start_new_thread(networkTranslateSingle,
                                 (translateList, temp[i].content, ActiveProxies[i]))
def networkTranslateSingle(translateList=[], translateScope=[], proxy=""):
    for i in range(len(translateList)):
        if i in translateScope:
            networkRequest(translateList[i], len(translateList), proxy)

谷歌翻译网络请求的间隔为50毫秒。

def googleTranslate(translateItem: QTableWidgetItem, len=0, proxies=""):
    try:
        # 网站地址:谷歌翻译
        url = 'https://translate.google.hk/translate_a/single?client=gtx&sl=auto&tl=' + targetLanguage + '&dt=t&q=' + \
              translateItem.text()
        head = {  # 模拟浏览器头部信息,向豆瓣服务器发送消息
            "User-Agent": "Mozilla / 5.0(Windows NT 10.0; Win64; x64) AppleWebKit / 537.36(KHTML, like Gecko) Chrome / 80.0.3987.122  Safari / 537.36"
        }
        # 用户代理,表示告诉豆瓣服务器,我们是什么类型的机器、浏览器(本质上是告诉浏览器,我们可以接收什么水平的文件内容)
        proxies_wrap = {'http': proxies}
        # 获取网页
        r = requests.get(url, headers=head, proxies=proxies_wrap)
        if r.status_code == 200:
            load = json.loads(r.text)
            result = load[0][0][0]
            print("the %s translates is :%s" % (translateItem.text(), result))
            tableWidget.setItem(translateItem.row(), translateItem.column(), QTableWidgetItem(result))
            global translateNum
            translateNum = translateNum + 1
            progress = int(translateNum / len * 100)
            print("the progress is %s:", progress)
            worker = threading.Thread(target=progressbarChange(progress))
            worker.start()
        else:
            showdialog("注意", r.text)
    except requests.exceptions.ConnectionError:
        print("Error: unable to start thread")
    time.sleep(0.05)

百度翻译需要更多的间隔时间:800毫秒,容易出现非必现的网络请求失败错误,建立失败内容集合,再次进行百度翻译请求,因为是爬取付费API,我的百度翻译账号里面没有钱了,需要到源码里更换你的账号才能使用,此外内容涉及版权问题,CSDN审核不通过,想知道具体操作需点击下方链接获取源码。

开始翻译后会有进度条弹框出现,后者在全部任务结束后会自动关闭。

进度条的刷新使用信号发送具体的参数。

xls转xml:
直接选择列数作为xml文档里面的key和value的值,点击toXml就可以转换。

具体代码实现如下:

def convertxls():
    if workbook is None:
        showdialog("注意", "请先打开一个.xls格式的文件!")
    else:
        sheets_ = workbook.sheets()[0]
        contentxls = '<?xml version="1.0" encoding="utf-8"?>\n<resources>\n'
        # eg:  <string name="authentication_title">Two-factor Authentication</string>
        if mainView.main_ui.includeHeader.isChecked():
            for i in range(sheets_.nrows):
                if len(sheets_.cell(i, int(mainView.main_ui.keyEdit.text()) - 1).value) > 0:
                    contentxls += '\t<string name="' + str(
                        sheets_.cell(i, int(mainView.main_ui.keyEdit.text()) - 1).value) + '">' \
                                  + str(
                        sheets_.cell(i, int(mainView.main_ui.valueEdit.text()) - 1).value) + '</string>\n'
        else:
            for i in range(sheets_.nrows):
                if len(sheets_.cell(i, int(mainView.main_ui.keyEdit.text()) - 1).value) > 0 and i > 0:
                    contentxls += '\t<string name="' + str(
                        sheets_.cell(i, int(mainView.main_ui.keyEdit.text()) - 1).value) + '">' \
                                  + str(
                        sheets_.cell(i, int(mainView.main_ui.valueEdit.text()) - 1).value) + '</string>\n'
                else:
                    continue
        contentxls += '</resources>'
        print(contentxls)

        savefile_name = QFileDialog.getSaveFileName(None, "保存文件", "./", "Text Files (*.xml);;All Files (*)")
        if len(savefile_name[0]) > 0:
            savexml = open(savefile_name[0], 'w', encoding="utf-8")
            ret = savexml.write(contentxls)
            if ret > 0:
                showdialog("注意", "文件转换成功!")
            else:
                showdialog("注意", "文件转换失败!")
            savexml.close()

项目源代码:https://github.com/xbzl123/pythonProject_xls
创造不易,麻烦给个starred,感谢支持!!!

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Python是一种功能强大的编程语言,可以用于各种数据分析任务。而在Python的数据分析工具库中,pandas是最受欢迎和广泛使用的工具之一。 Pandas提供了用于处理和分析数据的高级数据结构和函数。其最常用的数据结构是DataFrame,类似于Excel中的表格。通过Pandas,我们可以读取Excel文件,并将其转换为DataFrame对象进行进一步处理。 使用Pandas进行Excel数据分析的第一步是读取Excel文件。Pandas提供了read_excel函数,可以方便地读取Excel文件并转换为DataFrame对象。我们可以指定要读取的工作表、要保留的列、要跳过的行等。 一旦我们将Excel文件读取为DataFrame对象,我们可以使用Pandas提供的丰富函数和操作对数据进行各种处理和分析。例如,我们可以使用head()函数查看前几行数据,使用describe()函数获取数据的统计摘要,使用mean()函数计算平均值,使用groupby()函数对数据进行分组等等。 除了数据处理和分析,Pandas还提供了各种工具来处理缺失值和数据清洗。我们可以使用dropna()函数删除含有缺失值的行或列,使用fillna()函数将缺失值填充为指定的值,使用replace()函数替换数据中的特定值等。 在数据分析完成后,我们可以使用to_excel函数将DataFrame对象保存为Excel文件。在保存时,我们可以指定要保存的工作表、保存的位置和文件名等。 总之,Pandas是一个非常强大和灵活的库,可以使Python在处理Excel数据时变得更加简单和高效。无论是数据的读取、处理、分析还是保存,Pandas都提供了丰富而简洁的函数和操作,使得数据分析变得更加容易。 ### 回答2: Pandas是一个功能强大的数据分析工具,可以轻松地处理和分析各种数据。同时,Pandas还提供了许多用于读取、处理和写入Excel文件的功能,让我们能够更方便地从Excel文件中提取和处理数据。 在使用Pandas进行Excel数据分析时,我们首先需要使用`pandas.read_excel()`函数读取Excel文件,并将其存储为一个Pandas的DataFrame对象。这样可以轻松地使用Pandas的各种数据处理和分析功能。 Pandas提供了一系列的函数来处理Excel数据,比如对数据进行过滤、排序、计算统计量等。我们可以使用`head()`函数快速查看数据的前几行,使用`describe()`函数生成数据的统计概要信息,使用`sort_values()`函数对数据进行排序等。 除此之外,Pandas还提供了一些方便的函数来进行Excel数据的写入。我们可以使用`to_excel()`函数将DataFrame对象写入Excel文件,并通过参数来设置写入的Sheet名称、行列标签等。 除了基本的读写操作,Pandas还提供了丰富的数据转换和清洗功能,如数据合并、去重、填充空值等等。这些功能可以帮助我们更好地理解和分析Excel中的数据。 总而言之,Pandas是一个非常方便和强大的数据分析工具,可以让我们轻松地处理和分析Excel数据。通过Pandas,我们可以更加快速和高效地提取、清洗和分析数据,将Excel文件作为数据分析的重要来源之一。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值