7-1 是否同一棵二叉搜索树(25 分)
给定一个插入序列就可以唯一确定一棵二叉搜索树。然而,一棵给定的二叉搜索树却可以由多种不同的插入序列得到。例如分别按照序列{2, 1, 3}和{2, 3, 1}插入初始为空的二叉搜索树,都得到一样的结果。于是对于输入的各种插入序列,你需要判断它们是否能生成一样的二叉搜索树。
输入格式:
输入包含若干组测试数据。每组数据的第1行给出两个正整数N (≤10)和L,分别是每个序列插入元素的个数和需要检查的序列个数。第2行给出N个以空格分隔的正整数,作为初始插入序列。最后L行,每行给出N个插入的元素,属于L个需要检查的序列。
简单起见,我们保证每个插入序列都是1到N的一个排列。当读到N为0时,标志输入结束,这组数据不要处理。
输出格式:
对每一组需要检查的序列,如果其生成的二叉搜索树跟对应的初始序列生成的一样,输出“Yes”,否则输出“No”。
输入样例:
4 2
3 1 4 2
3 4 1 2
3 2 4 1
2 1
2 1
1 2
0
输出样例:
Yes
No
No
#include <stdio.h>
#include <stdlib.h>
int I;
struct node
{
int data;
struct node * l, *r;
};
void create(int x,struct node * head)
{
struct node * p,*q;
p=head;
while(1)
{
if(x<p->data)
{
if(p->l==NULL)
{
q=(struct node *)malloc(sizeof(struct node));
q->data=x;
p->l=q;
q->l=NULL;
q->r=NULL;
break;
}
else
{
p=p->l;
}
}
else
{
if(p->r==NULL)
{
q=(struct node *)malloc(sizeof(struct node));
q->data=x;
p->r=q;
q->r=NULL;
q->l=NULL;
break;
}
else
{
p=p->r;
}
}
}
}
void qianxu(struct node * head,int a[])
{
a[I++]=head->data;
if(head->l!=NULL)
{
qianxu(head->l,a);
}
else
{
a[I++]=-1;
}
if(head->r!=NULL)
{
qianxu(head->r,a);
}
else
{
a[I++]=-1;
}
}
int main()
{
int i,j,x,n,l,flag;
struct node * head;
int a[999],b[999];
while(scanf("%d",&n)!=EOF)
{
if(n==0)
{
break;
}
else
{
scanf("%d",&l);
I=0;
head=(struct node *)malloc(sizeof(struct node));
scanf("%d",&x);
head->data=x;
head->l=NULL;
head->r=NULL;
for(i=2;i<=n;i++)
{
scanf("%d",&x);
create(x,head);
}
qianxu(head,a);
for(i=1;i<=l;i++)
{
I=0;
scanf("%d",&x);
head->data=x;
head->l=NULL;
head->r=NULL;
for(j=2;j<=n;j++)
{
scanf("%d",&x);
create(x,head);
}
qianxu(head,b);
for(j=0,flag=1;j<=I-1;j++)
{
if(a[j]!=b[j])
{
flag=0;
break;
}
}
if(flag)
{
printf("Yes\n");
}
else
{
printf("No\n");
}
}
}
}
return 0;
}