深度学习
Deep In
没有天赋,努力就好。
展开
-
循环神经网络
基本结构如图所示,从图中可以看到输入 x, 隐含层,输出层等,这些与传统神经网络类似。自循环W却是它的一大特色。其中U是输入层到隐含层的权重矩阵,W是状态到隐含层的权重矩阵,s为状态,V是隐含层到输出层的权重矩阵。从图中可以看出,它的共享参数是各个时间节点对W, U,V都是不变的,这个机制就像卷积神经网络的过滤器机制一样,通过这个方法,实现参数共享,可以大大降低参数量。隐含层结构这个网络在每个时间t都有相同的网络结构。假设 输出的 x 是 n 维向量,隐含层的神经元个数是m,输出层的神经元个数为r原创 2020-05-20 16:44:24 · 1110 阅读 · 0 评论 -
自编码器图像去噪-pytorch实现
概念自编码器的两个核心部分是编码器和解码器,它将输入数据压缩到一个潜在的空间中,然后再根据这个空间将数据进行重构得到最后的输出数据。整个架构都是采用神经网络构建,与普通的神经网络架构相似。作用对图像去噪;对数据进行压缩降维;数据采用的数据是MNIST数据集,把数据集下载放在MNIST_data文件夹中,也可以先下载好数据集放在文件夹中。网络构建网络结构的编码器与普通的神经网络差...原创 2020-04-10 14:00:05 · 6272 阅读 · 5 评论 -
生成对抗网络(GAN) 手写数字图像生成
生成式对抗网络(GAN)简介生成式对抗网络的框架主要有两个模型,一个是生成模型(Generator),记为为 G,是用来生成数据,通过大量的样本学习,生成一些能够以假乱真的数据样本。第二个是辨别模型(Discriminator),记为D,主要是接受 G生成的样本数据和真实样本数据,进行辨别和分类。生成网络G接受一个随机的噪声z并生成图片,记为G(z);判别网络D的作用是判别一张图片x是否真...原创 2020-04-07 15:49:54 · 4541 阅读 · 2 评论 -
人工神经网络概述
百科解释: 人工神经网络(Artificial Neural Network,即ANN ),是20世纪80 年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象, 建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称...转载 2018-12-07 21:21:19 · 2171 阅读 · 0 评论 -
深度学习---反向传播算法
装载原文:https://www.cnblogs.com/yeluzi/p/7418291.html一. 一种基于矩阵运算快速计算神经网络输出的方法在介绍反向传播之前,先介绍怎么利用矩阵运算快速的计算神经网络输出。其实在上一章对这一块也提到过,不过不够详细。这里再介绍一下,帮助大家逐渐适应基于矩阵运算的表示方式。我们先引入一个能够明确表示连接神经网络中某两层之间的某两个神经元的权重的符...转载 2018-12-11 16:30:15 · 3509 阅读 · 0 评论