学习笔记
Deep In
没有天赋,努力就好。
展开
-
用数据练习逻辑回归
逻辑回归也被称为广义线性回归模型,它与线性回归模型的形式基本相同,最大的区别是它们的因变量不同,如果是连续的,就是多重线性回归,如果是二项分布,就是 Logistic回归。 Logistic回归虽然名字里带“回归”,但它实际上是一种分类方法,主要用于二分类问题。逻辑回归就是这样的一个过程:面对一个回归或者分类问题,建立相应的函数,然后通过优化方法迭代求解出最优的模型参数,然后测试验证这个求解的模型的好坏。 它的优点有: 速度快,适合二分类问题; 简单、易于理解,可以直接看到各个特征的权重; 能容易原创 2020-05-21 15:29:10 · 599 阅读 · 0 评论 -
循环神经网络
基本结构 如图所示,从图中可以看到输入 x, 隐含层,输出层等,这些与传统神经网络类似。自循环W却是它的一大特色。 其中U是输入层到隐含层的权重矩阵,W是状态到隐含层的权重矩阵,s为状态,V是隐含层到输出层的权重矩阵。 从图中可以看出,它的共享参数是各个时间节点对W, U,V都是不变的,这个机制就像卷积神经网络的过滤器机制一样,通过这个方法,实现参数共享,可以大大降低参数量。 隐含层结构 这个网络在每个时间t都有相同的网络结构。假设 输出的 x 是 n 维向量,隐含层的神经元个数是m,输出层的神经元个数为r原创 2020-05-20 16:44:24 · 1110 阅读 · 0 评论 -
pytorch实现CIFAR-10多分类
数据集说明 CIFAR-10数据集由10个类的 60000 个 32x32 彩色图像组成,每个类有6000个图像。有50000个训练图像和10000个测试图像。数据集划分为5个训练批次和1个测试批次,每个批次有10000个图像,测试批次包含来自每个类别的恰好1000个随机选择的图像。训练批次以随机顺序包含剩余图像,但由于一些训练批次可能来源一个类别的图像比另一个多,因此总体来看,5个训练集之和包含...原创 2020-04-30 22:24:23 · 5823 阅读 · 0 评论 -
反向传播算法(代码笔记)
import numpy as np #反向传播算法定义损失函数和激活函数 def loss(network_y, real_y): ''' 返回函数的编导,损失函数使用 MSE L = 1/2 (netowork_y - real_y)^2 delta_L = network_y - real_y 损失函数使用了均方误差作为该神经网络的损失函数,因此求...原创 2018-12-11 17:44:58 · 1734 阅读 · 0 评论