前不久看了位哥们参加百度实习生后发出的帖子,求一个算法能够使得一个数组右移k位,时间复杂度为O(n),空间复杂度为O(1)。
一开始想了好几天,感觉这个好纠结。只能用一个临时变量对这个数组进行右移。我一开始想法是:每次移动一个数据元素,然后进行多次移位。好像这样也是可行的,时间复杂度为O(k*n),虽然时间复杂度不是O(n),但是也不会高到哪去的。
这个问题一直困扰着我,终于在昨天搞定了。首先说下原理吧。昨天在上课的时候,一同学突然问我,不需要临时变量而进行交换两个数据(比如int型的),我就告诉他咯,我们一般都采用位运算来进行的。数理逻辑运算里面有很多定理的。比如交换两个数就用到了这么个逻辑运算。
当完成这个想法后,我突然又想起了上面的移位算法了。比如右移k位,那么,总操作可以分为三步来进行。比如:待移位的数组为A,长度为nLen。
首先,我们把数组分为两个子数组,分别为A1,A2。A1下标从0到nLen-k-1,A2的下标从nLen-k到nLen-1.
第二步:分别将两个子数组A1,A2进行反转。(反转的意思是:12 3 4 反转后是 4 3 2 1)
第三步:将反转后的整个数组再进行一次反转。那么,我们就得到了正确的序列了。
这个算法的时间复杂度为O(n),空间复杂度为O(1)。完全满足要求。下面我们来证明下这个算法的正确性。
已经分为子数组的A1和A2,即A=A1 A2,我们利用了逻辑运算非运算来证明。下面看逻辑运算的定理。
上面的问题迎刃而解了。利用两次反转,就解决了。而且刚好只遍历了数组一遍就完成了数组右移K位的算法。
下面上代码了。
void My_Swap(int* a,int* b)
{
if(a==b)
return;
*a=*a^*b;
*b=*a^*b;
*a=*b^*a;
}
/*
****把nArr数组从nStart到nEnd之间的数据进行反转。***
****1 2 3反转后成为 3 2 1**************************
*/
void Reverse(int nArr[],int nStart,int nEnd)
{
int i;
for (i=0;i<(nEnd-nStart+1)/2;i++)
{
My_Swap(&nArr[nStart+i],&nArr[nEnd-i]);
}
}
/************************************************************************/
/* 线性时间内右移n位,空间复杂度为O(1) */
/************************************************************************/
void LineShift(int nArr[],int nLen,int n)
{
Reverse(nArr,0,nLen-n-1);
Reverse(nArr,nLen-n,nLen-1);
Reverse(nArr,0,nLen-1);
}
int main(void)
{
int nArr[]={1,2,3,4,5,7,8,9};
LineShift(nArr,8,2);
for (int i=0;i<8;i++)
{
cout<<nArr[i]<<" ";
}
return 0;
}