哈希对于大数据的处理

本文介绍了哈希在处理大数据时的应用,包括利用位图和布隆过滤器找小次数重复数、查找数字文件交集、实现布隆过滤器的删除操作、处理字符串交集以及一致性哈希在服务器数据存储中的作用。通过哈希映射和特性利用,实现高效的数据处理和存储策略。
摘要由CSDN通过智能技术生成

哈希对于大数据的处理一般借助位图和布隆过滤器。首先我们先对于这两种数据结构进行应用。

第一:大数据整数,找只出现一次或者两次或者三次的小次数重复的数。如何寻找?

我们借助于map统计次数的思想,并加以对位图进行改装,使用两个位图进行操作。底层封装两个位图,一个位表示存在,另一个位标识是否出现两次或者以上。比如01表示一次,10表示两次以上,而更多的有限次就可以使用这种方式来表示,其本质的思路,还是利用较小的空间表示更多的状态,还是一种抓特性特点的处理数据方式。

#include "bitset.h"
using namespace whc;

class solution1
{
   
public:
	void set
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值