#今日论文推荐# ICML 2022 | 基于随机注意力机制的可解释可泛化图学习

#今日论文推荐# ICML 2022 | 基于随机注意力机制的可解释可泛化图学习

图学习模型广泛应用于科学领域,例如物理学(Bapst et al., 2020)和生物化学(Jumper et al., 2021)。对于科学家来说,相比于建立准确的预测模型,从诱发某些预测的数据中发现模式更为重要。最近,图神经网络(GNN)由于其强大的表达能力几乎成为了主流的图学习模型。然而,它们的表现力通常建立在不规则图特征的高度非线性纠缠之上。因此,从 GNN 用于进行预测的数据中找出模式通常十分具有挑战性。
本文通过提出 Graph Stochastic Attention(GSAT)来迎接上述挑战,GSAT 是一种新颖的注意力机制,用于构建具有内在可解释性和良好泛化性的 GNN。GSAT 的基本原理源于信息瓶颈(IB)的概念(Tishby 等人,2000;Tishby & Zaslavsky,2015)。研究通过将随机性注入到注意力中来将注意力制定为 IB,以约束从输入图到预测的信息流(Shannon,1948)。与标签无关的图组件的这种随机性将在训练期间保持,而与标签相关的图组件的随机性可以自动减少。这种差异最终提供了模型解释。
本文的主要贡献如下:

  • 首先,IB 原则将 GSAT 从先前方法采用的任何潜在的有偏见的假设中解放出来,例如检测图形模式的大小或连接性约束。GSAT 可以实现更好的解释。
  • 其次,从 IB 的角度来看,所有事后解释方法都是次优的。它们基本上在没有任何信息控制的情况下优化模型,然后对信息控制执行单步投影,这会导致最终解释性能对预训练模型敏感。
  • 第三,通过减少输入图中的信息,GSAT 可以证明在某些假设下可以去除训练数据中的虚假相关性,从而实现更好的泛化。
  • 第四,如果提供预训练模型,GSAT 可能会进一步提高其解释和预测准确性。
  • 在多个真实世界的数据集上进行实验,发现本文提出的模型优于现有方法。

论文题目:Interpretable and Generalizable Graph Learning via Stochastic Attention Mechanism
详细解读:https://www.aminer.cn/research_report/62f4f1f07cb68b460f00c195icon-default.png?t=M666https://www.aminer.cn/research_report/62f4f1f07cb68b460f00c195
AMiner链接:https://www.aminer.cn/?f=cs

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值