图的遍历(深度优先与广度优先)

深度优先遍历简称DFS(Depth First Search),广度优先遍历简称BFS(Breadth First Search)
图的创建(邻接矩阵和邻接表)

         深度优先遍历

一:运行实例

创建的图如下:数字代表创建顺序
在这里插入图片描述
注意:创建边是使用头插法
在这里插入图片描述

二:遍历展示(结合上图)

从a点进行深度优先遍历:
过程:
1.遍历A点,
2.访问下标为2的C点
3.再访问下标为0的A点,因为访问过则next
4.到下标为3的D点
5.再访问下标为1的B点
6.因为都访问过了,接下来就是慢慢返回
遍历结果:a->c->d->b

三:代码及注释(编译环境:vs2019)

#include<stdio.h>
#include<stdlib.h>
#define M 20
typedef char datatype; /*顶点信息数据类型*/

typedef struct node {   /*边表结点*/
	int adjvex;         /*邻接点*/
	struct node* next;
}edgeNode;

typedef struct vnode {  /*头结点类型*/
	datatype vertex;    /*顶点信息*/
	edgeNode* firstEdge;/*邻接链表头指针*/
}vexnode;

typedef struct {           /*邻接表类型*/
	vexnode adjList[M];  /*存放头结点的顺序表*/
	int n, e;                 /*图的顶点数与边数*/
}adjGraph;
int visited[M];

/*------建立无向图的邻接表算法-------*/
void createAdjGraph(adjGraph* G)
{
	int i, j, k;
	edgeNode* s;
	printf("Please input n and e: ");
	scanf_s("%d%d", &G->n, &G->e);              /*输入顶点数与边数*/
	getchar();                             
	printf("Please input %d vertex:", G->n);
	for (i = 0; i < G->n; i++)
	{
		printf("请输入第%d个顶点:", i + 1);
		scanf_s("%c", &G->adjList[i].vertex,1); /*读入顶点信息*/
		getchar();
		G->adjList[i].firstEdge = NULL;         /*边表置为空表*/
	}
	printf("Please input %d edges:", G->e);
	for (k = 0; k < G->e; k++)                     /*循环e次建立边表*/
	{
		printf("请输入第%d条边:", k + 1);
		scanf_s("%d%d", &i, &j);                 /*输入无序对(i,j),两个顶点的下标*/

		//头插法
		s = (edgeNode*)malloc(sizeof(edgeNode));
		s->adjvex = j;                         /*邻接点序号为j*/
		s->next = G->adjList[i].firstEdge;
		G->adjList[i].firstEdge = s;           /*将新结点*s插入顶点vi的边表头部*/

		s = (edgeNode*)malloc(sizeof(edgeNode));
		s->adjvex = i;                         /*邻接点序号为i*/
		s->next = G->adjList[j].firstEdge;
		G->adjList[j].firstEdge = s;           /*将新结点*s插入顶点vj的边表头部*/
	}
}
/*---函数print():邻接表存储结构---*/
void print(adjGraph G)
{
	edgeNode* p;
	int i;
	for (i = 0; i < G.n; i++)
	{
		printf("%c  ", G.adjList[i].vertex);
		p = G.adjList[i].firstEdge;
		while (p)
		{
			printf("%d-->", p->adjvex);
			p = p->next;
		}
		printf("\n");
	}
}

void DFS(adjGraph G, int i)
{
	edgeNode* p;
	printf("visit vertex: %c \n", G.adjList[i].vertex);/*访问顶点i*/
	visited[i] = 1;			
	p = G.adjList[i].firstEdge;
	while (p)                 /*从p的邻接点出发进行深度优先搜索*/
	{
		if (!visited[p->adjvex])
			DFS(G, p->adjvex);
		p = p->next;
	}
}
void DFStraverse(adjGraph G)
{
	int i;
	for (i = 0; i < G.n; i++)
		visited[i] = 0;     /*初始化标志数组*/
	for (i = 0; i < G.n; i++)
		if (!visited[i])  /*vi未访问过,!0为真*/
			DFS(G, i);
}

int main()
{
	adjGraph G;
	createAdjGraph(&G);            /*创建图的邻接表*/
	printf("\n The Graph is:\n");

	print(G);
	DFStraverse(G);
	return 0;
}

         广度优先遍历

一:遍历展示

  广度优先遍历是一层一层的往下去遍历,我们可以用一个队列(先进先出)来存储每一层的节点,在遍历每一个节点时,取它下一层的节点,放到队列的末尾,遍历完一层时,下一层的节点也放到了队列中。

  创建的图如下:数字代表创建顺序,从b点进行广度优先遍历:
过程:
1.b点入队,(b为队头)
2.队头b出队,b点的边连接点倒序入队,d,c,a(d为队头)
3.队头d出队,d点的边连接点因为都已经入队,不作为(c为队头)
4.队头c出队,c点的边连接点因为都已经入队, 不作为(a为队头)
5.队头a出队,同上不作为(此时队列为空)
6.e点入队(e为队头)
7.队头e出队,无边表节点,结束
遍历结果(出队顺序):b->d->c->a 最后e
在这里插入图片描述

二:运行实例展示

n是顶点数,e是边数
在这里插入图片描述

三:代码及注释(编译环境:vs2019)

#include<stdio.h>
#include<stdlib.h>
#define M 20          
typedef char datatype; /*顶点信息数据类型*/
typedef struct node {   /*边表结点*/
	int adjvex;         /*邻接点*/
	struct node* next;
}edgeNode;

typedef struct vnode {  /*头结点类型*/
	datatype vertex;    /*顶点信息*/
	edgeNode* firstEdge;/*邻接链表头指针*/
}vertexnode;

typedef struct {           /*邻接表类型*/
	vertexnode adjList[M];  /*存放头结点的顺序表*/
	int n, e;                 /*图的顶点数与边数*/
}adjGraph;
int visited[M];

/*------建立无向图的邻接表算法-------*/
void createAdjGraph(adjGraph* G)
{
	int i, j, k;
	edgeNode* s;
	printf("Please input n and e:\n");
	scanf_s("%d%d", &G->n, &G->e);              /*输入顶点数与边数*/
	getchar();                              /*取消回车符*/
	printf("Please input %d vertex:", G->n);
	for (i = 0; i < G->n; i++)
	{
		printf("请输入第%d个顶点:", i + 1);
		scanf_s("%c", &G->adjList[i].vertex, 1);    /*读入顶点信息*/
		getchar();
		G->adjList[i].firstEdge = NULL;         /*边表置为空表*/
	}
	printf("Please input %d edges:", G->e);
	for (k = 0; k < G->e; k++)                     /*循环e次建立边表*/
	{
		printf("请输入第%d条边:", k + 1);
		scanf_s("%d%d", &i, &j);                 /*输入无序对(i,j)*/
		//头插法
		s = (edgeNode*)malloc(sizeof(edgeNode));
		s->adjvex = j;                         /*邻接点序号为j*/
		s->next = G->adjList[i].firstEdge;
		G->adjList[i].firstEdge = s;           /*将新结点*s插入顶点vi的边表头部*/
		s = (edgeNode*)malloc(sizeof(edgeNode));
		s->adjvex = i;                         /*邻接点序号为i*/
		s->next = G->adjList[j].firstEdge;
		G->adjList[j].firstEdge = s;           /*将新结点*s插入顶点vj的边表头部*/
	}
}
/*---函数PRINT():输入邻接表存储结构---*/
void PRINT(adjGraph G)
{
	edgeNode* p;
	int i;
	for (i = 0; i < G.n; i++) {
		printf("%c  ", G.adjList[i].vertex);
		p = G.adjList[i].firstEdge;
		while (p) {
			printf("%d-->", p->adjvex);
			p = p->next;
		}
		printf("\n");
	}
}

/*---函数locate():查找结点data在图中的序号---*/
int locate(adjGraph G, datatype data) {
	int i;
	i = 0;
	while (i < G.n && G.adjList[i].vertex != data)
		i++;
	if (i == G.n)
		return -1;
	else
		return i;
}

//breadth-first search
void BFS(adjGraph G, int i)
{
	int j;
	edgeNode* p;
	int queue[20], head, tail;           /*FIFO队列*/
	head = -1;
	tail = -1;                   /*初始化空队列*/
	printf("%c ", G.adjList[i].vertex);                    /*访问源点v*/
	visited[i] = 1;
	queue[++tail] = i;                    /*被访问结点进队*/
	while (tail > head)                   /*当队列非空时,执行下列循环体*/
	{
		j = queue[++head];                /*出队*/
		p = G.adjList[j].firstEdge;
		while (p)                       /*广度优先搜索邻接表*/
		{
			if (visited[p->adjvex] == 0) {
				printf("%c ", G.adjList[p->adjvex].vertex);
				queue[++tail] = p->adjvex;
				visited[p->adjvex] = 1;
			}
			p = p->next;
		}
	}
}

/*-----从顶点v开始广度优先遍历图G----*/
int BFStraverse(adjGraph G, datatype v)
{
	int i, count = 0;
	for (i = 0; i < G.n; i++)
		visited[i] = 0;     /*初始化标志数组*/
	i = locate(G, v);           /*寻找顶点v在邻接表中的位序*/
	if (i != -1) {
		count++;          /*连通分量个数加1*/
		BFS(G, i);
	}
	for (i = 0; i < G.n; i++)
		if (!visited[i])  /*vi未访问过*/
		{
			printf("\n");
			count++;     /*连通分量个数加1*/
			BFS(G, i);
		}
	return count;
}
int main()
{
	adjGraph G;
	int count; //连通分量个数
	datatype  v;

	createAdjGraph(&G);
	printf("\n The Graph is:\n");
	PRINT(G);
	getchar();

	printf("input the source node:"); //输入源节点
	scanf_s("%c", &v, 1);
	count = BFStraverse(G, v);		  //从顶点v出发广度优先遍历图G
	printf("\nthe total %d connectivity\n", count);
	return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小木荣

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值