深度优先遍历简称DFS(Depth First Search),广度优先遍历简称BFS(Breadth First Search)
图的创建(邻接矩阵和邻接表)
深度优先遍历
一:运行实例
创建的图如下:数字代表创建顺序
注意:创建边是使用头插法
二:遍历展示(结合上图)
从a点进行深度优先遍历:
过程:
1.遍历A点,
2.访问下标为2的C点
3.再访问下标为0的A点,因为访问过则next
4.到下标为3的D点
5.再访问下标为1的B点
6.因为都访问过了,接下来就是慢慢返回
遍历结果:a->c->d->b
三:代码及注释(编译环境:vs2019)
#include<stdio.h>
#include<stdlib.h>
#define M 20
typedef char datatype; /*顶点信息数据类型*/
typedef struct node { /*边表结点*/
int adjvex; /*邻接点*/
struct node* next;
}edgeNode;
typedef struct vnode { /*头结点类型*/
datatype vertex; /*顶点信息*/
edgeNode* firstEdge;/*邻接链表头指针*/
}vexnode;
typedef struct { /*邻接表类型*/
vexnode adjList[M]; /*存放头结点的顺序表*/
int n, e; /*图的顶点数与边数*/
}adjGraph;
int visited[M];
/*------建立无向图的邻接表算法-------*/
void createAdjGraph(adjGraph* G)
{
int i, j, k;
edgeNode* s;
printf("Please input n and e: ");
scanf_s("%d%d", &G->n, &G->e); /*输入顶点数与边数*/
getchar();
printf("Please input %d vertex:", G->n);
for (i = 0; i < G->n; i++)
{
printf("请输入第%d个顶点:", i + 1);
scanf_s("%c", &G->adjList[i].vertex,1); /*读入顶点信息*/
getchar();
G->adjList[i].firstEdge = NULL; /*边表置为空表*/
}
printf("Please input %d edges:", G->e);
for (k = 0; k < G->e; k++) /*循环e次建立边表*/
{
printf("请输入第%d条边:", k + 1);
scanf_s("%d%d", &i, &j); /*输入无序对(i,j),两个顶点的下标*/
//头插法
s = (edgeNode*)malloc(sizeof(edgeNode));
s->adjvex = j; /*邻接点序号为j*/
s->next = G->adjList[i].firstEdge;
G->adjList[i].firstEdge = s; /*将新结点*s插入顶点vi的边表头部*/
s = (edgeNode*)malloc(sizeof(edgeNode));
s->adjvex = i; /*邻接点序号为i*/
s->next = G->adjList[j].firstEdge;
G->adjList[j].firstEdge = s; /*将新结点*s插入顶点vj的边表头部*/
}
}
/*---函数print():邻接表存储结构---*/
void print(adjGraph G)
{
edgeNode* p;
int i;
for (i = 0; i < G.n; i++)
{
printf("%c ", G.adjList[i].vertex);
p = G.adjList[i].firstEdge;
while (p)
{
printf("%d-->", p->adjvex);
p = p->next;
}
printf("\n");
}
}
void DFS(adjGraph G, int i)
{
edgeNode* p;
printf("visit vertex: %c \n", G.adjList[i].vertex);/*访问顶点i*/
visited[i] = 1;
p = G.adjList[i].firstEdge;
while (p) /*从p的邻接点出发进行深度优先搜索*/
{
if (!visited[p->adjvex])
DFS(G, p->adjvex);
p = p->next;
}
}
void DFStraverse(adjGraph G)
{
int i;
for (i = 0; i < G.n; i++)
visited[i] = 0; /*初始化标志数组*/
for (i = 0; i < G.n; i++)
if (!visited[i]) /*vi未访问过,!0为真*/
DFS(G, i);
}
int main()
{
adjGraph G;
createAdjGraph(&G); /*创建图的邻接表*/
printf("\n The Graph is:\n");
print(G);
DFStraverse(G);
return 0;
}
广度优先遍历
一:遍历展示
广度优先遍历是一层一层的往下去遍历,我们可以用一个队列(先进先出)来存储每一层的节点,在遍历每一个节点时,取它下一层的节点,放到队列的末尾,遍历完一层时,下一层的节点也放到了队列中。
创建的图如下:数字代表创建顺序,从b点进行广度优先遍历:
过程:
1.b点入队,(b为队头)
2.队头b出队,b点的边连接点倒序入队,d,c,a(d为队头)
3.队头d出队,d点的边连接点因为都已经入队,不作为(c为队头)
4.队头c出队,c点的边连接点因为都已经入队, 不作为(a为队头)
5.队头a出队,同上不作为(此时队列为空)
6.e点入队(e为队头)
7.队头e出队,无边表节点,结束
遍历结果(出队顺序):b->d->c->a 最后e
二:运行实例展示
n是顶点数,e是边数
三:代码及注释(编译环境:vs2019)
#include<stdio.h>
#include<stdlib.h>
#define M 20
typedef char datatype; /*顶点信息数据类型*/
typedef struct node { /*边表结点*/
int adjvex; /*邻接点*/
struct node* next;
}edgeNode;
typedef struct vnode { /*头结点类型*/
datatype vertex; /*顶点信息*/
edgeNode* firstEdge;/*邻接链表头指针*/
}vertexnode;
typedef struct { /*邻接表类型*/
vertexnode adjList[M]; /*存放头结点的顺序表*/
int n, e; /*图的顶点数与边数*/
}adjGraph;
int visited[M];
/*------建立无向图的邻接表算法-------*/
void createAdjGraph(adjGraph* G)
{
int i, j, k;
edgeNode* s;
printf("Please input n and e:\n");
scanf_s("%d%d", &G->n, &G->e); /*输入顶点数与边数*/
getchar(); /*取消回车符*/
printf("Please input %d vertex:", G->n);
for (i = 0; i < G->n; i++)
{
printf("请输入第%d个顶点:", i + 1);
scanf_s("%c", &G->adjList[i].vertex, 1); /*读入顶点信息*/
getchar();
G->adjList[i].firstEdge = NULL; /*边表置为空表*/
}
printf("Please input %d edges:", G->e);
for (k = 0; k < G->e; k++) /*循环e次建立边表*/
{
printf("请输入第%d条边:", k + 1);
scanf_s("%d%d", &i, &j); /*输入无序对(i,j)*/
//头插法
s = (edgeNode*)malloc(sizeof(edgeNode));
s->adjvex = j; /*邻接点序号为j*/
s->next = G->adjList[i].firstEdge;
G->adjList[i].firstEdge = s; /*将新结点*s插入顶点vi的边表头部*/
s = (edgeNode*)malloc(sizeof(edgeNode));
s->adjvex = i; /*邻接点序号为i*/
s->next = G->adjList[j].firstEdge;
G->adjList[j].firstEdge = s; /*将新结点*s插入顶点vj的边表头部*/
}
}
/*---函数PRINT():输入邻接表存储结构---*/
void PRINT(adjGraph G)
{
edgeNode* p;
int i;
for (i = 0; i < G.n; i++) {
printf("%c ", G.adjList[i].vertex);
p = G.adjList[i].firstEdge;
while (p) {
printf("%d-->", p->adjvex);
p = p->next;
}
printf("\n");
}
}
/*---函数locate():查找结点data在图中的序号---*/
int locate(adjGraph G, datatype data) {
int i;
i = 0;
while (i < G.n && G.adjList[i].vertex != data)
i++;
if (i == G.n)
return -1;
else
return i;
}
//breadth-first search
void BFS(adjGraph G, int i)
{
int j;
edgeNode* p;
int queue[20], head, tail; /*FIFO队列*/
head = -1;
tail = -1; /*初始化空队列*/
printf("%c ", G.adjList[i].vertex); /*访问源点v*/
visited[i] = 1;
queue[++tail] = i; /*被访问结点进队*/
while (tail > head) /*当队列非空时,执行下列循环体*/
{
j = queue[++head]; /*出队*/
p = G.adjList[j].firstEdge;
while (p) /*广度优先搜索邻接表*/
{
if (visited[p->adjvex] == 0) {
printf("%c ", G.adjList[p->adjvex].vertex);
queue[++tail] = p->adjvex;
visited[p->adjvex] = 1;
}
p = p->next;
}
}
}
/*-----从顶点v开始广度优先遍历图G----*/
int BFStraverse(adjGraph G, datatype v)
{
int i, count = 0;
for (i = 0; i < G.n; i++)
visited[i] = 0; /*初始化标志数组*/
i = locate(G, v); /*寻找顶点v在邻接表中的位序*/
if (i != -1) {
count++; /*连通分量个数加1*/
BFS(G, i);
}
for (i = 0; i < G.n; i++)
if (!visited[i]) /*vi未访问过*/
{
printf("\n");
count++; /*连通分量个数加1*/
BFS(G, i);
}
return count;
}
int main()
{
adjGraph G;
int count; //连通分量个数
datatype v;
createAdjGraph(&G);
printf("\n The Graph is:\n");
PRINT(G);
getchar();
printf("input the source node:"); //输入源节点
scanf_s("%c", &v, 1);
count = BFStraverse(G, v); //从顶点v出发广度优先遍历图G
printf("\nthe total %d connectivity\n", count);
return 0;
}