【Redis】Hash哈希



注意个问题

Hash中也有映射关系,Redis本身也有映射关系:key-value。为了区分,hash中的映射关系是:
field-value,也就是说,哈希表中相当于有两层映射关系:key {field-value}
在这里插入图片描述

hset命令(核心)

hset key field value [field value …]
返回值是设置成功的键值对(field-value)个数。
这里的value是一个string类型。

时间复杂度O(N),N是成功插入的键值对的个数。
注意:hmset命令也可以,就是一次插入多个键值对。

hget命令(核心)

hget key field
返回值是获取到的key对应的值field对应的value值。
如果不存在,返回nil
相当于进行了两次哈希。

时间复杂度O(1)
注意:hmget同理,可以一次获取多个field对应的value值。

hexists命令

判断key对应的field对应的value是否存在。

hexists key field
返回值:1表示存在,0表示不存在。

hdel命令

删除指定的key对应的field,可以一次删除多个field

hdel key field [field … ]

返回值是成功删除的field-value个数。

注意:hdel和del是有区别的,hdel删的是一个或者多个键值对,而del命令是一股脑直接把key对应的整个哈希表都删了

hkeys和hvals命令

这个命令相当于keys命令(获取的是key)。

hkeys key
返回值是返回key对应的整个哈希表中的field。

hvals命令是获取key对应的哈希表中每个field对应的所有values。

hvals key
返回值是返回key对应的整个哈希表中的field对应的整个values字段。

注意
1.这两个操作是存在风险的,类似于keys 星
2.h系列里面的命令,必须保证key对应的value是哈希类型的。

hgetall和hmget命令

hgetall命令是获取key对应的所有的filed-value。

hgetall key
返回值是key对应的整个哈希表的键值对。

hmget命令前面说过了,类似于mget命令。

hlen命令

获取key对应的哈希表的字段元素个数

hlen key
返回值就是哈希表的字段个数。
O(1)的时间复杂度,不需要遍历。

hsetnx命令

类似于setnx命令,不存在才能设置成功,存在则设置失败。

hsetnx key field value

hincrby命令

类似于incrby命令,hash这里的value也可以当做数字来处理(前面说value是string类型)
不过这里的hincrby可以用来加减整数。

hincrby key field increment

所以value必须是整数才行。

hincrbyfloat,类似于incrbyfloat命令。
用来加减浮点数。

hincrby key field increment

哈希命令小结

在这里插入图片描述

哈希编码方式

hashtable的编码方式有两种:

  • 1.ziplist(压缩列表,这个之前的文章讲过什么是ziplist):当哈希类型元素个数小于hash-max-ziplist-entries 配置(默认 512 个)、
    同时所有值都小于hash-max-ziplist-value 配置(默认 64 字节)时,Redis 会使⽤ ziplist 作为哈
    希的内部实现,ziplist 使⽤更加紧凑的结构实现多个元素的连续存储,所以在节省内存⽅⾯⽐
    hashtable 更加优秀。

压缩的本质,是对数据进行重新编码。结合不同数据的特点经过巧妙设计,重新编码后,就能够缩小体积。

所以ziplist同理,内部的数据结构也是精心设计的,目的就是为了节省空间。

  • 2.hashtable(哈希表):当哈希类型⽆法满⾜ ziplist 的条件时,Redis 会使⽤ hashtable 作为哈希的内部实现,这表示的是一个普通的哈希表,(hash首先是一个数组,数组上有些位置有元素,有些没有,所以可能会浪费一定空间)因为此时 ziplist 的读写效率会下降,⽽ hashtable 的读写时间复杂度为 O(1)。

付出的代价:
ziplist:(本质上就是一个双向链表),所以读写操作的代价都比较大,最坏情况可能是O(n)。
hashtable:可能会浪费一些空间。

使用到ziplist也有一些条件:

  • 1.如果哈希表中的元素较少,使用ziplist。否则使用hashtable。
  • 2.如果哈希表中的field对应的value值的长度较短,使用ziplist。否则value的长度太大的话,会选择使用hashtable。

使用场景

1.关系型数据表保存用户的信息

在这里插入图片描述

使用哈希类型进行用户属性和用户id的映射伪代码:
在这里插入图片描述
但是需要注意的是哈希类型和关系型数据库有两点不同之处:
• 哈希类型是稀疏的,⽽关系型数据库是完全结构化的,例如哈希类型每个键可以有不同的 field,⽽
关系型数据库⼀旦添加新的列,所有⾏都要为其设置值,即使为 null。
• 关系数据库可以做复杂的关系查询,⽽ Redis 去模拟关系型复杂查询,例如联表查询、聚合查询等
基本不可能,维护成本⾼。

关系型数据库和非关系型数据库的对比:
在这里插入图片描述
上面是关系型数据库,下面是非关系型数据库。
在这里插入图片描述

Redis三种缓存方式对比

1.原生字符串类型

在这里插入图片描述
这样就把同一个数据各个属性分散开了,且内存占用较大,实际上基本不使用。(低内聚)

2.JSON串

如果使用string(json)的类型来表示UserInfo(用户信息),万一只想获取某个用户的field,或者修改某个用户的field,就需要把用户整个json读出来,解析成对象,操作field,再把整个field重新写成json串的格式,再写回去。

优点:空间利用率高。

3.哈希类型(经常用这种)

如果使用hash的方式来表示UserInfo,就可以使用field表示对象的每个属性(数据表的列)此时就可以非常方便地修改/获取任何一个属性的值了。

缺点:上面讲过了,用哈希来表示UserInfo虽然读写上更直观高效,但是付出的是空间的代价。

我理解的高内聚和低耦合

我认为高内聚就是把所有关联的东西放到一起,最好能放到一个指定的地方。
这样做就是为了好找。

而低耦合就是两块代码之间的的关系不大,一个代码出bug了,另一个代码几乎没影响。

### Redis哈希冲突的解决方案 在 Redis 的设计中,为了应对哈希冲突的情况,默认情况下使用了两个哈希表。其中一个哈希表(哈希表2)在未发生大量哈希冲突时不预先分配内存空间[^2]。 #### 渐进式 rehash 方案 当哈希冲突变得频繁时,Redis 实施了一种称为 **渐进式 rehash** 的策略来处理这个问题。该方法的核心在于逐步迁移键值对到新的哈希表中,而不是一次性完成整个重哈希操作。具体来说,在每次执行命令的过程中,Redis 都会检查当前是否正在进行 rehash;如果是,则会在后台自动将一部分桶的数据迁移到新创建的哈希表上。这种方式可以有效减少因大规模数据移动带来的延迟影响。 #### Rehash 过程中的读写支持 在整个 rehash 期间,旧有的哈希表仍然可用,这意味着客户端依然能够正常地进行查询、插入以及删除等操作而不会受到干扰。对于新增加或者更新的数据项,它们会被放置于最新的哈希表里;而对于来自旧有哈希表上的请求,则通过遍历两个表格来进行定位和响应[^3]。 ```python def get_value(key, hash_table_1, hash_table_2=None): value = hash_table_1.get(key) if not value and hash_table_2 is not None: value = hash_table_2.get(key) return value def set_value(key, value, hash_table_1, hash_table_2=None): if hash_table_2 is not None: hash_table_2[key] = value else: hash_table_1[key] = value ``` 这种机制不仅提高了系统的稳定性和效率,同时也简化了应用程序层面的设计复杂度,因为开发者无需特别考虑底层存储结构的变化所带来的兼容性问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

邓富民

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值