Codeforces Round #427 (Div. 2) - C - Star sky

C. Star sky
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

The Cartesian coordinate system is set in the sky. There you can see n stars, the i-th has coordinates (xiyi), a maximum brightness c, equal for all stars, and an initial brightness si (0 ≤ si ≤ c).

Over time the stars twinkle. At moment 0 the i-th star has brightness si. Let at moment t some star has brightness x. Then at moment (t + 1) this star will have brightness x + 1, if x + 1 ≤ c, and 0, otherwise.

You want to look at the sky q times. In the i-th time you will look at the moment ti and you will see a rectangle with sides parallel to the coordinate axes, the lower left corner has coordinates (x1iy1i) and the upper right — (x2iy2i). For each view, you want to know the total brightness of the stars lying in the viewed rectangle.

A star lies in a rectangle if it lies on its border or lies strictly inside it.

Input

The first line contains three integers nqc (1 ≤ n, q ≤ 1051 ≤ c ≤ 10) — the number of the stars, the number of the views and the maximum brightness of the stars.

The next n lines contain the stars description. The i-th from these lines contains three integers xiyisi (1 ≤ xi, yi ≤ 1000 ≤ si ≤ c ≤ 10) — the coordinates of i-th star and its initial brightness.

The next q lines contain the views description. The i-th from these lines contains five integers tix1iy1ix2iy2i (0 ≤ ti ≤ 1091 ≤ x1i < x2i ≤ 1001 ≤ y1i < y2i ≤ 100) — the moment of the i-th view and the coordinates of the viewed rectangle.

Output

For each view print the total brightness of the viewed stars.

Examples
input
2 3 3
1 1 1
3 2 0
2 1 1 2 2
0 2 1 4 5
5 1 1 5 5
output
3
0
3
input
3 4 5
1 1 2
2 3 0
3 3 1
0 1 1 100 100
1 2 2 4 4
2 2 1 4 7
1 50 50 51 51
output
3
3
5
0
Note

Let's consider the first example.

At the first view, you can see only the first star. At moment 2 its brightness is 3, so the answer is 3.

At the second view, you can see only the second star. At moment 0 its brightness is 0, so the answer is 0.

At the third view, you can see both stars. At moment 5 brightness of the first is 2, and brightness of the second is 1, so the answer is 3.


题意:有n颗星星,每颗星星有各自的初始位置(xi,yi)以及初始亮度 si ,所有星星的最大亮度均为 c ,星星亮度每秒+1,当亮度大于 c 时变为 0 , 求第 t 秒时一个矩形区域内所有的星星的亮度总和。

因为星星的亮度变化是周期性的,所以任一区域内的星星亮度总和也是周期性的,周期长度为 c+1 ,(x1,y1)到(x2,y2)矩形区域内星星的亮度总和可以由下图所示的大矩形减小矩形得到

                     

所以我们只要把0-c秒内所有的(0,0)到(x,y)内所包含的所有星星的亮度总和求出,输出答案的时候加加减减一下就行了。

刚开始以为一个坐标只有一个星星一直错

#include<iostream>
#include<string.h>
#include<stdio.h>
using namespace std;
int n,q,s,sum[15][111][111];//sum[t][x][y]代表在t秒时(0,0)到(x,y)矩形内所有星星的亮度总和
int main()
{
    while(~scanf("%d%d%d",&n,&q,&s))
    {
        memset(sum,0,sizeof sum);
        for(int i=0;i<n;i++)
        {
            int a,b,c;
            scanf("%d%d%d",&a,&b,&c);
            for(int j=0;j<=10;j++)
                sum[j][a][b] += (c + j) % (s+1);//一个位置可以出现多个星星
        }
        for(int i=0;i<=10;i++)
            for(int j=1;j<=100;j++)
                for(int k=1;k<=100;k++)
                    sum[i][j][k] += sum[i][j-1][k] + sum[i][j][k-1] - sum[i][j-1][k-1];
        while(q--)
        {
            int t,x1,x2,y1,y2;
            scanf("%d%d%d%d%d",&t,&x1,&y1,&x2,&y2);
            t %= (s+1);
            int ans = sum[t][x2][y2] + sum[t][x1-1][y1-1] - sum[t][x1-1][y2] - sum[t][x2][y1-1];
            printf("%d\n",ans);
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值