The Cartesian coordinate system is set in the sky. There you can see n stars, the i-th has coordinates (xi, yi), a maximum brightness c, equal for all stars, and an initial brightness si (0 ≤ si ≤ c).
Over time the stars twinkle. At moment 0 the i-th star has brightness si. Let at moment t some star has brightness x. Then at moment (t + 1) this star will have brightness x + 1, if x + 1 ≤ c, and 0, otherwise.
You want to look at the sky q times. In the i-th time you will look at the moment ti and you will see a rectangle with sides parallel to the coordinate axes, the lower left corner has coordinates (x1i, y1i) and the upper right — (x2i, y2i). For each view, you want to know the total brightness of the stars lying in the viewed rectangle.
A star lies in a rectangle if it lies on its border or lies strictly inside it.
The first line contains three integers n, q, c (1 ≤ n, q ≤ 105, 1 ≤ c ≤ 10) — the number of the stars, the number of the views and the maximum brightness of the stars.
The next n lines contain the stars description. The i-th from these lines contains three integers xi, yi, si (1 ≤ xi, yi ≤ 100, 0 ≤ si ≤ c ≤ 10) — the coordinates of i-th star and its initial brightness.
The next q lines contain the views description. The i-th from these lines contains five integers ti, x1i, y1i, x2i, y2i (0 ≤ ti ≤ 109, 1 ≤ x1i < x2i ≤ 100, 1 ≤ y1i < y2i ≤ 100) — the moment of the i-th view and the coordinates of the viewed rectangle.
For each view print the total brightness of the viewed stars.
2 3 3 1 1 1 3 2 0 2 1 1 2 2 0 2 1 4 5 5 1 1 5 5
3 0 3
3 4 5 1 1 2 2 3 0 3 3 1 0 1 1 100 100 1 2 2 4 4 2 2 1 4 7 1 50 50 51 51
3 3 5 0
Let's consider the first example.
At the first view, you can see only the first star. At moment 2 its brightness is 3, so the answer is 3.
At the second view, you can see only the second star. At moment 0 its brightness is 0, so the answer is 0.
At the third view, you can see both stars. At moment 5 brightness of the first is 2, and brightness of the second is 1, so the answer is 3.
因为星星的亮度变化是周期性的,所以任一区域内的星星亮度总和也是周期性的,周期长度为 c+1 ,(x1,y1)到(x2,y2)矩形区域内星星的亮度总和可以由下图所示的大矩形减小矩形得到
所以我们只要把0-c秒内所有的(0,0)到(x,y)内所包含的所有星星的亮度总和求出,输出答案的时候加加减减一下就行了。
刚开始以为一个坐标只有一个星星一直错
#include<iostream>
#include<string.h>
#include<stdio.h>
using namespace std;
int n,q,s,sum[15][111][111];//sum[t][x][y]代表在t秒时(0,0)到(x,y)矩形内所有星星的亮度总和
int main()
{
while(~scanf("%d%d%d",&n,&q,&s))
{
memset(sum,0,sizeof sum);
for(int i=0;i<n;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
for(int j=0;j<=10;j++)
sum[j][a][b] += (c + j) % (s+1);//一个位置可以出现多个星星
}
for(int i=0;i<=10;i++)
for(int j=1;j<=100;j++)
for(int k=1;k<=100;k++)
sum[i][j][k] += sum[i][j-1][k] + sum[i][j][k-1] - sum[i][j-1][k-1];
while(q--)
{
int t,x1,x2,y1,y2;
scanf("%d%d%d%d%d",&t,&x1,&y1,&x2,&y2);
t %= (s+1);
int ans = sum[t][x2][y2] + sum[t][x1-1][y1-1] - sum[t][x1-1][y2] - sum[t][x2][y1-1];
printf("%d\n",ans);
}
}
return 0;
}