Codeforces Round #427 (Div. 2) C. Star sky

C. Star sky
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

The Cartesian coordinate system is set in the sky. There you can see n stars, the i-th has coordinates (xiyi), a maximum brightness c, equal for all stars, and an initial brightness si (0 ≤ si ≤ c).

Over time the stars twinkle. At moment 0 the i-th star has brightness si. Let at moment t some star has brightness x. Then at moment (t + 1) this star will have brightness x + 1, if x + 1 ≤ c, and 0, otherwise.

You want to look at the sky q times. In the i-th time you will look at the moment ti and you will see a rectangle with sides parallel to the coordinate axes, the lower left corner has coordinates (x1iy1i) and the upper right — (x2iy2i). For each view, you want to know the total brightness of the stars lying in the viewed rectangle.

A star lies in a rectangle if it lies on its border or lies strictly inside it.

Input

The first line contains three integers nqc (1 ≤ n, q ≤ 1051 ≤ c ≤ 10) — the number of the stars, the number of the views and the maximum brightness of the stars.

The next n lines contain the stars description. The i-th from these lines contains three integers xiyisi (1 ≤ xi, yi ≤ 1000 ≤ si ≤ c ≤ 10) — the coordinates of i-th star and its initial brightness.

The next q lines contain the views description. The i-th from these lines contains five integers tix1iy1ix2iy2i (0 ≤ ti ≤ 1091 ≤ x1i < x2i ≤ 1001 ≤ y1i < y2i ≤ 100) — the moment of the i-th view and the coordinates of the viewed rectangle.

Output

For each view print the total brightness of the viewed stars.

Examples
input
2 3 3
1 1 1
3 2 0
2 1 1 2 2
0 2 1 4 5
5 1 1 5 5
output
3
0
3
input
3 4 5
1 1 2
2 3 0
3 3 1
0 1 1 100 100
1 2 2 4 4
2 2 1 4 7
1 50 50 51 51
output
3
3
5
0
Note

Let's consider the first example.

At the first view, you can see only the first star. At moment 2 its brightness is 3, so the answer is 3.

At the second view, you can see only the second star. At moment 0 its brightness is 0, so the answer is 0.

At the third view, you can see both stars. At moment 5 brightness of the first is 2, and brightness of the second is 1, so the answer is 3.


题意:给出二维面上星星的亮度,每次询问t秒后,某区域内星星亮度总和,其中亮度变化s=(s+t)%(c+1)

思路:一个点上可能有多个点,定义一个数组d[c][x][y],表示(0,0)->(x,y)区域上亮度为c的总个数,状态转移方程为:dp[k][i][j] += dp[k][i - 1][j] + dp[k][i][j - 1] - dp[k][i - 1][j - 1]。利用这些前缀和相减,就能使每次询问得出结果复杂程度降到O(1)复杂度

上代码

#include<iostream>
#include<cmath>
#include<cstring>
#include<cstdio>
#include<string>
#include<queue>
#include<stack>
#include<vector>
#include<map>
#include<algorithm>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define maxn 105
int dp[12][maxn][maxn];
int main()
{
	//freopen("Text.txt","r",stdin);
	int n, q, c,x,y,s,x1,y1,t;
	memset(dp, 0, sizeof(dp));
	scanf("%d%d%d", &n, &q, &c);
	while (n--)
	{
		scanf("%d%d%d", &x, &y, &s);
		dp[s][x][y]++;
	}
	for (int i = 1; i <= 100; i++)
	{
		for (int j = 1; j <= 100; j++)
		{
			for (int k = 0; k <= c; k++)
			{	
				dp[k][i][j] += dp[k][i - 1][j] + dp[k][i][j - 1] - dp[k][i - 1][j - 1];//是指(0,0)到(x,y)区域内亮度为k的总个数
			    //printf("%d ", dp[k][i][j]);
		    }
			//printf("\n");
		}
		//printf("\n");
	}
	while (q--)
	{
		int sum[12],cnt=0;
		scanf("%d%d%d%d%d", &t, &x, &y, &x1, &y1);
		for (int i = 0; i <= c; i++)
		{
			sum[i] = dp[i][x1][y1] + dp[i][x - 1][y - 1] - dp[i][x1][y - 1] - dp[i][x - 1][y1];//画图好理解些,因为边缘点要包括
			cnt += ((i + t)%(c+1))*sum[i];
		}
		printf("%d\n", cnt);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值