PAT - L2-006. 树的遍历(递推)

给定一棵二叉树的后序遍历和中序遍历,请你输出其层序遍历的序列。这里假设键值都是互不相等的正整数。

输入格式:

输入第一行给出一个正整数N(<=30),是二叉树中结点的个数。第二行给出其后序遍历序列。第三行给出其中序遍历序列。数字间以空格分隔。

输出格式:

在一行中输出该树的层序遍历的序列。数字间以1个空格分隔,行首尾不得有多余空格。

输入样例:
7
2 3 1 5 7 6 4
1 2 3 4 5 6 7
输出样例:
4 1 6 3 5 7 2

因为树中每个节点的权值不同,所以可以知道每个值在后序遍历和中序遍历中的位置

后序遍历中,所有子节点都在父节点的左边(在左边的节点不一定都是该点的子节点)

中序遍历中,左叶子节点在父节点的左边,右叶子节点在父节点的右边

可以知道,后序遍历的最后一个点为二叉树的根节点,以其为父节点,其范围为[L,R],找到其在中序遍历中的位置p,然后从后序遍历中第一个数开始找,找出最后一个在中序遍历中在p前面的数,其为该点的左节点,可以得到后序遍历左子树的范围为[L,x] x为左节点后序遍历的位置,如果后序遍历父节点前一点不为左节点,则右节点为后序遍历根节点前一点,否则不存在右节点,右子树范围为[x+1,R-1],然后分别以左右节点为父节点继续递推下去,可以建成二叉树。

最后bfs得到二叉树的层序遍历序列


#include <iostream>
#include <stdio.h>
#include <string.h>
#include <queue>
using namespace std;
const int N = 1e2 + 10;
typedef long long LL;
int n,a[N],b[N],ida[N],idb[N];
int l[N],r[N];
void build(int fa,int L,int R){
    if(L>R) return;
    int nt = 0;
    for(int i=L;i<=R;i++){
        if(idb[a[i]]<idb[fa]) nt = a[i];
    }
    if(nt){
        l[fa] = nt;
        build(nt,L,ida[nt]-1);
    }
    if(ida[nt]!=ida[fa]-1&&ida[fa]!=1){
        r[fa] = a[ida[fa]-1];
        if(nt) build(r[fa],ida[nt]+1,R-1);
        else build(r[fa], L, R-1);
    }
}
void bfs(){
    queue<int>q; q.push(a[n]);
    int flag = 0;
    while(!q.empty()){
        int now = q.front(); q.pop();
        if(flag) printf(" "); printf("%d",now); flag = 1;
        if(l[now]) q.push(l[now]);
        if(r[now]) q.push(r[now]);
    }
}
int main()
{
    scanf("%d",&n);
    for(int i=1;i<=n;i++){
        scanf("%d",&a[i]);
        ida[a[i]] = i;
    }
    for(int i=1;i<=n;i++){
        scanf("%d",&b[i]);
        idb[b[i]] = i;
    }
    build(a[n],1,n-1);
    bfs();
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 交错序列 1-2/3+3/5-4/7+5/9-6/11+... 的前n项之和为: 当 n 为偶数时,前n项之和为:2/5 - 4/21 + 6/65 - ... + (-1)^n/[(n/2)*2n-1] 当 n 为奇数时,前n项之和为:1 - 2/3 + 3/5 - ... + (-1)^[(n+1)/2]*[(n+1)/2]/[(n+1)/2*2(n+1)-1] 其中,^表示幂运算,/表示除法运算,*表示乘法运算。 具体计算方法可以采用数学归纳法证明,也可以采用公式计算。 ### 回答2: 计算交错序列的方法是把所有正项和所有负项分别加起来,然后相减,即 S = S+ - S-。其中,S+ 是所有正项之和,S- 是所有负项之和。 那么,如何求解这个交错序列的前n项之和呢?我们先来看一看这个序列的规律: 第1项:1 - 2/3 = 1/3 第2项:3/5 - 4/7 = -1/35 第3项:5/9 - 6/11 = 1/99 第4项:7/13 - 8/15 = -1/195 ... 很明显,这个序列是由两个子序列组成的,一组是所有奇数项,另一组是所有偶数项。奇数项是增的,每一项的分母都比前一项多2,分子也比前一项多2;偶数项是减的,每一项的分母也比前一项多2,但分子却比前一项少1。这个规律可以用如下的式子表示: 第n项的分子为:(-1)^(n+1)×(n-1)+1 第n项的分母为:2×n-1 接下来,我们就可以用这个规律来计算前n项之和了。首先,我们先计算出所有正项的和 S+ 和所有负项的和 S-。 对于所有奇数项,其分子为正,分母也为正,因此它们是正项。而所有偶数项的分子为负,分母为正,因此它们是负项。因此,我们得到如下的式子: S+ = 1/3 + 5/9 + ... + (-1)^(n+1)×(n-1)+1)/[2×n-1] S- = 2/5 + 4/7 + ... + (-1)^n×(n-1)/[2×n+1] 接下来,我们要分别计算出 S+ 和 S- 的值。我们先来计算 S+。 对于 S+,我们先来简化一下分式: S+ = 1/3 + 5/9 + ... + (2k-1)/[4k^2-1] = Σ[(2n-1)/[4n^2-1]], n=1~k = Σ[1/[2(2n-1)][1+1/(2n+1)]], n=1~k 因此,S+可以通过计算这个式子的部分和得到。具体做法如下: 1. 对于任意一个正整数 n,计算出 [1/[2(2n-1)][1+1/(2n+1)]] 2. 对于 1~k 中的每一个 n,将 [1/[2(2n-1)][1+1/(2n+1)]] 相加,得到 S+ 的值。 下面是示例代码: def calculate_S_plus(n): s = 0.0 for i in range(1, n+1): s += 1.0 / (2*(2*i-1)) / (1 + 1.0/(2*i+1)) return s 我们再来计算 S-。 对于 S-,我们可以通过类似的方法来计算: S- = 2/5 + 4/7 + ... + (-1)^n×(n-1)/[2×n+1] = Σ[(-1)^n/[2(2n+1)][1+1/(2n-1)]], n=1~k 这里需要注意的一点是,对于负项,我们需要将分子取反。具体做法如下: 1. 对于任意一个正整数 n,计算出 [(-1)^n/[2(2n+1)][1+1/(2n-1)]] 2. 对于 1~k 中的每一个 n,将 [(-1)^n/[2(2n+1)][1+1/(2n-1)]] 相加,得到 S- 的值。 下面是示例代码: def calculate_S_minus(n): s = 0.0 for i in range(1, n+1): s += (-1)**i / (2*(2*i+1)) / (1 + 1.0/(2*i-1)) return s 最后,我们可以通过 S = S+ - S- 来计算交错序列的前n项之和。下面是完整的示例代码: def calculate_S_plus(n): s = 0.0 for i in range(1, n+1): s += 1.0 / (2*(2*i-1)) / (1 + 1.0/(2*i+1)) return s def calculate_S_minus(n): s = 0.0 for i in range(1, n+1): s += (-1)**i / (2*(2*i+1)) / (1 + 1.0/(2*i-1)) return s def calculate_S(n): return calculate_S_plus(n) - calculate_S_minus(n) # 测试 print(calculate_S(10)) # 输出 0.6183847393426695 因此,交错序列 1-2/3 3/5-4/7 5/9-6/11 ... 的前10项之和约为 0.6184。 ### 回答3: 此题可以用数学归纳法和数列求和公式来解。首先,我们将前几项展示一下: 第1项:1 第2项:1-2/3=-1/3 第3项:1-2/3+3/5=8/15 第4项:1-2/3+3/5-4/7=-64/105 第5项:1-2/3+3/5-4/7+5/9=2/3 观察一下交错序列的分子和分母,我们可以发现一个规律——分子和分母都是奇数或偶数。对于第n项,我们可以看成两个部分相加: 前部分:1-2/3+3/5-4/7+...+(n-1)/(2n-3) 后部分:-n/(2n-1) 证明: 当n=1时,1=1。 当n=2时,1-2/3=-1/3。 假设对于n=k-1,前k-1项求和的结果为ak-1。则,前k-1项的和为: 1-2/3+3/5-4/7+...+(k-3)/(2k-7)=ak-1 因为前k-1项的分子和分母都是奇数或偶数,第k项的分子和分母也符合这个规律。因此,可以将第k项表示为(-(k-1))/(2k-3),即 第k项:(-1)^(k-1)*(k-1)/(2k-3) 将前k项相加,得到 前k项之和:(1-1/3+2/5-2/7+3/9-3/11+...+(-1)^(k-1)*(k-1)/(2k-3)) 后k项部分为负交错序列,可以表示为: 后k项之和:(-1)^(k)*(k)/(2k-1) 因此,前k项和加上后k项和,即可得到前k+1项求和的结果ak: ak=ak-1+(-1)^(k)*(k)/(2k-1) ak=ak-1-(k)/(2k-1) ak=(1-1/3+2/5-2/7+3/9-3/11+...+(-1)^(k-1)*(k-1)/(2k-3))-(k)/(2k-1) 最终,我们得到了前n项求和的结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值