BZOJ 1095 Hide 捉迷藏 详解(动态点分治 堆维护)

1095: [ZJOI2007]Hide 捉迷藏

Time Limit: 40 Sec Memory Limit: 256 MB
Description

  捉迷藏 Jiajia和Wind是一对恩爱的夫妻,并且他们有很多孩子。某天,Jiajia、Wind和孩子们决定在家里玩
捉迷藏游戏。他们的家很大且构造很奇特,由N个屋子和N-1条双向走廊组成,这N-1条走廊的分布使得任意两个屋
子都互相可达。游戏是这样进行的,孩子们负责躲藏,Jiajia负责找,而Wind负责操纵这N个屋子的灯。在起初的
时候,所有的灯都没有被打开。每一次,孩子们只会躲藏在没有开灯的房间中,但是为了增加刺激性,孩子们会要
求打开某个房间的电灯或者关闭某个房间的电灯。为了评估某一次游戏的复杂性,Jiajia希望知道可能的最远的两
个孩子的距离(即最远的两个关灯房间的距离)。 我们将以如下形式定义每一种操作: C(hange) i 改变第i个房
间的照明状态,若原来打开,则关闭;若原来关闭,则打开。 G(ame) 开始一次游戏,查询最远的两个关灯房间的
距离。

Input

  第一行包含一个整数N,表示房间的个数,房间将被编号为1,2,3…N的整数。接下来N-1行每行两个整数a, b,
表示房间a与房间b之间有一条走廊相连。接下来一行包含一个整数Q,表示操作次数。接着Q行,每行一个操作,如
上文所示。

Output

  对于每一个操作Game,输出一个非负整数到hide.out,表示最远的两个关灯房间的距离。若只有一个房间是关
着灯的,输出0;若所有房间的灯都开着,输出-1。

Sample Input

8
1 2
2 3
3 4
3 5
3 6
6 7
6 8
7
G
C 1
G
C 2
G
C 1
G

Sample Output

4
3
3
4

HINT

对于100%的数据, N ≤100000, M ≤500000。

题目大意:给定一棵树,一开始每个点都是黑点,多次改变某个点的状态或询问距离最远的两个黑点的距离

思路:
树上的链问题,容易想到点分。
但是跟一般的点分治不同,这里我们要支持修改,也就是动态点分治。
怎么做呢?考虑把分治过程中所有重心都连起来得到一棵新树。
修改就是要从下往上把所有的祖先都修改了。
这棵树的高度不会超过O(logn),所以修改就是log级别的。
要修改就不得不把dis记录下来,我们要找最长,于是考虑用大根堆维护。
我们每个重心开两个堆,第一个堆记录子树中所有节点到父亲节点的距离(f[]),第二个堆记录所有子节点的堆顶(c[]),详见代码。
那么一个节点的堆c中的最大和次大加起来就是子树中经过这个节点的最长链。
最后开一个堆,维护答案。
怎么删改呢?还是大佬的方法好。
开始时堆c中要插一个0表示单链可以算,而改为白点的时候0就删掉了(不能做端点)。
又去偷了一个封装双堆。(YY了很久都没想到怎么删除)
封装双堆分别为值和删了的值,取的时候两堆顶相同则pop,相当于变种删除标记。

然后。。。膜大佬。。。

#include<queue>  
#include<cstdio>  
#include<iostream>  
using namespace std;  

const int N = 100005;

int idc=0, n, m, core=0, size;  
int head[N],vis[N],siz[N],deep[N],acc[N][21],mn[N],col[N],prt[N];

struct Priority_Queue{  
    priority_queue<int>q, del;//储存堆, 删除堆  
    void push(int x){ q.push(x); }  
    void erase(int x){ del.push(x); }  
    int top(){  
        while(del.size() && del.top()==q.top()){
            del.pop(); q.pop();//先删除 
        }
        return q.top();  
    }  
    void Pop(){  
        while(del.size() && del.top()==q.top()){
            del.pop(); q.pop();//先删除 
        }  
        q.pop();  
    }  
    int sec_top(){//第二大元素  
        int tmp = top(); Pop();  
        int cc = top(); push(tmp);  
        return cc;  
    }  
    int size(){
        return q.size() - del.size();
    }  
}c[N], f[N], ans;  
//c[i]储存从i点出发所有的链长
//f[i]储存i为重心的子树中所有点到i上一级重心的dis 

struct Edge{
    int to, next;
}ed[N*2];  

void adde(int u, int v){
    ed[++idc] = (Edge){v, head[u]};
    head[u] = idc;
}

void dfs(int u, int fa){//初始化st,deep 
     acc[u][0] = fa;  
     for(int i=1; i<=20; i++)
        acc[u][i]=acc[acc[u][i-1]][i-1];  
     for(int k=head[u]; k; k=ed[k].next){  
        int v = ed[k].to;  
        if(v == fa)continue;  
        deep[v] = deep[u] + 1;  
        dfs(v, u);  
     }  
}

void getcore(int u, int fat){
    siz[u] = 1, mn[u] = 0;
    for(int k=head[u]; k; k=ed[k].next){ 
        int v = ed[k].to;
        if(v == fat || vis[v]) continue;
        getcore(v, u);
        siz[u] += siz[v];
        mn[u] = max(mn[u], siz[v]);//所有子树中最大的 
    }
    mn[u] = max(mn[u], size-siz[u]);//与上边的部分比较(fa所在的数) 
    if(mn[u] < mn[core])
        core = u;//重心 
}

int lca(int x, int y){//倍增求lca 
    if(deep[x] < deep[y]) swap(x, y);  
    for(int j=20; j>=0; j--)  
        if(deep[acc[x][j]] >= deep[y]) x = acc[x][j];  
    if(x == y) return x;  
    for(int j=20; j>=0; j--)  
        if(acc[x][j] != acc[y][j]){
            x = acc[x][j]; y = acc[y][j];
        }  
    return acc[x][0];  
}  

int dis(int x, int y){
    return deep[x] + deep[y] - 2*deep[lca(x, y)];//两点间距离 
}

void work(int u, int fa, int Gra){//当前块中每个点到上一级重心的dis
     f[Gra].push( dis(u, prt[Gra]) );  
     for(int k=head[u]; k; k=ed[k].next){  
        int v = ed[k].to;  
        if(v == fa || vis[v]) continue;  
        work(v, u, Gra);  
     }  
}

void Insert(Priority_Queue &cc){  
     if(cc.size() > 1)
        ans.push(cc.top() + cc.sec_top());//ans由cc出发不在同一子树最长的两条链构成 
        //在同一子树的情况一定会被下一级的重心统计到 
}  

void Erase(Priority_Queue &cc){  
     if(cc.size() > 1)
        ans.erase(cc.top() + cc.sec_top());  
}  

int solve(int x, int fa){ 
    size = siz[x]; core = 0;//还原为0 
    getcore(x, 0); int G = core;//重心 
    prt[G] = fa;//上一级中心 
    work(G, 0, G);  
    vis[G] = 1;//断开 
    c[G].push(0);//G可以作为端点 
    for(int k=head[G]; k; k=ed[k].next){  
        int v = ed[k].to;  
        if( !vis[v] ){  
            int GG = solve(v, G);  
            c[G].push( f[GG].top() );  
        }  
    }  
    Insert( c[G] );  
    return G;  
}

void turnon(int x){//变白 
     Erase( c[x] );//变白点之后影响的只可能是以x为端点的链
     //而因为我们是点分治,所以这些链一定是是在x的统计中(c[x]中)
     c[x].erase( 0 );
     //我们去除了0,就是说当c[x].size==2时(包含0),不能再统计了(此时端点为x)
     //当c[x].size>2时(包含0),以x为端点的链一定不是最长链,不用考虑 
     Insert( c[x] );  
     for(int i=x; prt[i]; i=prt[i]){  
        Erase( c[prt[i]] );
        if( f[i].size() ) c[prt[i]].erase( f[i].top() );
        f[i].erase( dis(x, prt[i]) );//x不能成为端点,所以重心到x的dis删除
        if( f[i].size() ) c[prt[i]].push( f[i].top() );//更新 
        Insert( c[prt[i]] );  
     }  
}//Erase -> erase/push -> Insert 就是修改操作 

void turnoff(int x){//变黑 
     Erase( c[x] );//只影响x点做出的最大贡献
     c[x].push( 0 );//类比上边,这里可以统计以x为端点的链
     Insert( c[x] );  
     for(int i=x; prt[i]; i=prt[i]){  
        Erase( c[prt[i]] );//处理上一级的中心 
        if( f[i].size() ) c[prt[i]].erase( f[i].top() );
        //针对上一级重心,影响的只有x所在的子树,为什么只考虑top? 
        //(因为只影响最优解,不是最优解的话,当它成为最优解时就会被删掉,
        //【q中最优那么del中一定也最最优】,它不成为最优就不会删掉,但是也不会对答案产生影响) 
        f[i].push( dis(x, prt[i]) );//x能成为端点,所以重心到x的dis加入
        if( f[i].size() ) c[prt[i]].push( f[i].top() );
        Insert( c[prt[i]] );//更新 
     }  
}

int main(){
    scanf("%d", &n);  
    for(int i=1; i<n; i++){  
        int u, v;
        scanf("%d%d", &u, &v);  
        adde(u, v); adde(v, u);//开始全为黑点 
    }  
    deep[1] = 1; dfs(1, 0);//预处理deep 
    siz[1] = n; mn[core] = n + 1;//*** 
    solve(1, 0);// 
    int num = n;//黑点数  
    scanf("%d", &m);  
    for(int i=1; i<=m; i++){
        char ch[5]; scanf("%s", ch);  
        if(ch[0] == 'G'){  
          if(num <= 1) printf("%d\n", num-1);//0 | -1  
          else printf("%d\n", ans.top());  
        }
        else{
            int x; scanf("%d", &x);  
            if( !col[x] ){
                num--;
                turnon(x);
                col[x] = 1;
            }  
            else{
                num++;
                turnoff(x);
                col[x] = 0;
            }  
        }  
    } 
    return 0;  
}  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值