1084: [SCOI2005]最大子矩阵
Time Limit: 10 Sec Memory Limit: 162 MB
Description
这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大。注意:选出的k个子矩阵
不能相互重叠。
Input
第一行为n,m,k(1≤n≤100,1≤m≤2,1≤k≤10),接下来n行描述矩阵每行中的每个元素的分值(每个元素的
分值的绝对值不超过32767)。
Output
只有一行为k个子矩阵分值之和最大为多少。
Sample Input
3 2 2
1 -3
2 3
-2 3
Sample Output
9
思路:
f[i][j][k]表示第一列处理到第i个,第二列处理到第j个并且选取了k个子矩阵的最优值。转移的话要不从左边选择一块,要不从右边选择一块,又或者两列都占的矩形,但是只有i、j相等才可能两列都占,否则无法刚好到达i。
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 105
using namespace std;
int a[N][N], sum[N][N];
int f[N][N][N];//f[i][j][k]表示处理到第一列的第i个和第二列第j个用了k个矩阵的最大值
int main(){
int n, m, t;
scanf("%d%d%d", &n, &m, &t);
for(int i=1; i<=n; i++){
for(int j=1; j<=m; j++){
scanf("%d", &a[i][j]);
sum[j][i] = sum[j][i-1] + a[i][j];//每一列的前缀和
}
}
for(int i=0; i<=n; i++) {
for(int j=0; j<=n; j++){
for(int k=0; k<=t; k++){
for(int pos=i+1; pos<=n; pos++){
f[pos][j][k] = max(f[pos][j][k], f[i][j][k]);
f[pos][j][k+1] = max(f[pos][j][k+1], f[i][j][k] + sum[1][pos] - sum[1][i]);
}//新增矩阵在第一列
for(int pos=j+1; pos<=n; pos++){
f[i][pos][k] = max(f[i][pos][k], f[i][j][k]);
f[i][pos][k+1] = max(f[i][pos][k+1], f[i][j][k] + sum[2][pos] - sum[2][j]);
}//新增矩阵在第二列
for(int pos=max(i,j)+1; pos<=n; pos++){
f[pos][pos][k] = max(f[pos][pos][k], f[i][j][k]);
f[pos][pos][k+1] = max(f[pos][pos][k+1], f[i][j][k] + sum[1][pos] - sum[1][max(i,j)] + sum[2][pos]-sum[2][max(i,j)]);
}//新增矩阵包含一二列
}
}
}
int ans = 0;
for(int i=0; i<=n; i++){
for(int j=0; j<=n; j++){
for(int k=0; k<=t; k++){
ans = max(ans, f[i][j][k]);
}
}
}
printf("%d\n", ans);
return 0;
}