BZOJ 1084 最大子矩阵 (dp)

1084: [SCOI2005]最大子矩阵

Time Limit: 10 Sec Memory Limit: 162 MB
Description

  这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大。注意:选出的k个子矩阵
不能相互重叠。

Input

  第一行为n,m,k(1≤n≤100,1≤m≤2,1≤k≤10),接下来n行描述矩阵每行中的每个元素的分值(每个元素的
分值的绝对值不超过32767)。

Output

  只有一行为k个子矩阵分值之和最大为多少。

Sample Input

3 2 2

1 -3

2 3

-2 3

Sample Output

9

思路:
f[i][j][k]表示第一列处理到第i个,第二列处理到第j个并且选取了k个子矩阵的最优值。转移的话要不从左边选择一块,要不从右边选择一块,又或者两列都占的矩形,但是只有i、j相等才可能两列都占,否则无法刚好到达i。

#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 105
using namespace std;

int a[N][N], sum[N][N];
int f[N][N][N];//f[i][j][k]表示处理到第一列的第i个和第二列第j个用了k个矩阵的最大值

int main(){
    int n, m, t;
    scanf("%d%d%d", &n, &m, &t);
    for(int i=1; i<=n; i++){
        for(int j=1; j<=m; j++){
            scanf("%d", &a[i][j]);
            sum[j][i] = sum[j][i-1] + a[i][j];//每一列的前缀和 
        }
    }
    for(int i=0; i<=n; i++)  {
        for(int j=0; j<=n; j++){ 
            for(int k=0; k<=t; k++){  
                for(int pos=i+1; pos<=n; pos++){  
                    f[pos][j][k] = max(f[pos][j][k], f[i][j][k]);  
                    f[pos][j][k+1] = max(f[pos][j][k+1], f[i][j][k] + sum[1][pos] - sum[1][i]);  
                }//新增矩阵在第一列 
                for(int pos=j+1; pos<=n; pos++){  
                    f[i][pos][k] = max(f[i][pos][k], f[i][j][k]);  
                    f[i][pos][k+1] = max(f[i][pos][k+1], f[i][j][k] + sum[2][pos] - sum[2][j]);  
                }//新增矩阵在第二列 
                for(int pos=max(i,j)+1; pos<=n; pos++){  
                    f[pos][pos][k] = max(f[pos][pos][k], f[i][j][k]);  
                    f[pos][pos][k+1] = max(f[pos][pos][k+1], f[i][j][k] + sum[1][pos] - sum[1][max(i,j)] + sum[2][pos]-sum[2][max(i,j)]);  
                }//新增矩阵包含一二列 
            }
        }
    }
    int ans = 0; 
    for(int i=0; i<=n; i++){
        for(int j=0; j<=n; j++){
            for(int k=0; k<=t; k++){
                ans = max(ans, f[i][j][k]);
            }
        }
    }
    printf("%d\n", ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值