BZOJ 4198 荷马史诗 (k叉哈夫曼树)

4198: [Noi2015]荷马史诗

Time Limit: 10 Sec Memory Limit: 512 MB
Description

追逐影子的人,自己就是影子。 ——荷马

Allison 最近迷上了文学。她喜欢在一个慵懒的午后,细细地品上一杯卡布奇诺,静静地阅读她爱不释手的《荷马史诗》。但是由《奥德赛》和《伊利亚特》组成的鸿篇巨制《荷马史诗》实在是太长了,Allison 想通过一种编码方式使得它变得短一些。
一部《荷马史诗》中有 n 种不同的单词,从 1 到 n 进行编号。其中第 i 种单词出现的总次数为 wi。Allison 想要用 k 进制串 si 来替换第 i 种单词,使得其满足如下要求:
对于任意的 1≤i,j≤n,i≠j,都有:si 不是 sj 的前缀。
现在 Allison 想要知道,如何选择 si,才能使替换以后得到的新的《荷马史诗》长度最小。在确保总长度最小的情况下,Allison 还想知道最长的 si 的最短长度是多少?
一个字符串被称为 k 进制字符串,当且仅当它的每个字符是 0 到 k−1 之间(包括 0 和 k−1)的整数。
字符串 Str1 被称为字符串 Str2 的前缀,当且仅当:存在 1≤t≤m,使得 Str1=Str2[1..t]。其中,m 是字符串 Str2 的长度,Str2[1..t] 表示 Str2 的前 t 个字符组成的字符串。

Input

输入文件的第 1 行包含 2 个正整数 n,k,中间用单个空格隔开,表示共有 n 种单词,需要使用 k 进制字符串进行替换。

接下来 n 行,第 i+1 行包含 1 个非负整数 wi,表示第 i 种单词的出现次数。

Output

输出文件包括 2 行。

第 1 行输出 1 个整数,为《荷马史诗》经过重新编码以后的最短长度。
第 2 行输出 1 个整数,为保证最短总长度的情况下,最长字符串 si 的最短长度。

Sample Input

4 2
1
1
2
2

Sample Output

12
2

HINT

用 X(k) 表示 X 是以 k 进制表示的字符串。
一种最优方案:令 00(2) 替换第 1 种单词,01(2) 替换第 2 种单词,10(2) 替换第 3 种单词,11(2) 替换第 4 种单词。在这种方案下,编码以后的最短长度为:
1×2+1×2+2×2+2×2=12
最长字符串 si 的长度为 2。
一种非最优方案:令 000(2) 替换第 1 种单词,001(2) 替换第 2 种单词,01(2) 替换第 3 种单词,1(2) 替换第 4 种单词。在这种方案下,编码以后的最短长度为:
1×3+1×3+2×2+2×1=12
最长字符串 si 的长度为 3。与最优方案相比,文章的长度相同,但是最长字符串的长度更长一些。
对于所有数据,保证 2≤n≤100000,2≤k≤9。
选手请注意使用 64 位整数进行输入输出、存储和计算。

思路:
摘自 < CtrlCV >

题目背景已经暗示了这题需要用到哈夫曼编码

  一句话概括(摘自百度百科):在变字长编码中,如果码字长度严格按照对应符号出现的概率大小逆序排列,则其平均码字长度为最小

  所以我们从下往上构造哈夫曼树,贪心取权值最小的kk个节点重新构造成一个节点,该点权值为这几个点的点权和,可以用prioritypriority_queuequeue实现

  为了做第二问,我们可以在优先队列里存pairpair,第一个元素是出现次数,第二个元素是最长长度,这样可以使得每次选的长度尽量小,可以得到最优解

  当k≠2k≠2时,完美合并(感性理解这个词)需要满足n≡1 (mod k−1)n≡1 (mod k−1),不满足这个条件时相当于额外添了几个出现次数为00的单词

  所以k≠2k≠2时我们先补权值为00的节点使得可以完美合并,之后贪心即可

#include <iostream>  
#include <cstdio>  
#include <algorithm>  
#include <queue>  
#define LL long long
#define pr pair<LL, LL>
using namespace std;

priority_queue<pr, vector<pr>, greater<pr> > Q;
pr x, y, ans;

int main(){
    int n, k;
    cin >> n >> k;
    for(int i=1; i<=n; ++i){
        cin >> x.first;
        Q.push(x);
    }
    while(k > 2 && n % (k - 1) != 1)
        Q.push( make_pair(0, 0) ), ++n;
    while(Q.size() != 1){
        y.first = y.second = 0;
        for(int i=1; i<=k; ++i){
            x = Q.top(), Q.pop();
            y.first += x.first;
            y.second = max(y.second, x.second + 1);
        }
        ans.first += y.first;
        ans.second = max(ans.second, y.second);
        Q.push(y);
    }
    cout << ans.first << endl << ans.second << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值