i
10.14
思路:
先缩一遍强连通,如果一个点所属的强连通分量大小不是1或者有自环则不行,否则将所有1号点能到达的边与能到达n号点的边抽出来建一个新图,考察每个点是不是割顶即可。(后一步也可以按照拓扑序从小到大,存一个“当前访问过的点延伸出的最远的边”,如果之前所有最远的边都没有超过当前点,则这个点是一个答案。
还有一种方法就是算概率,通过递推转移得到所有点到达的概率,然后判1即可(真是妙极了)。但是因为图比较大精度容易出问题,所以我们考虑在1给予一个很大的流量,然后尽量平均的分给流出的各点(保证在流到n之前还有余流可以分配),最后找那些经过的流量与到达n的流量相同的点。(真是妙极了)
贴一份berrykanry的代码(自己的找不到了。。。反正是总结思路为主,代码什么的意思意思而已)
注:数据很迷,所以做题并不重要,主要是思路!
#include<stdio.h>
#include<cstring>
#include<stack>
#include<vector>
#include<queue>
#include<algorithm>
using namespace std;
struct edge
{
int u,v,last;
}ed[2000010],ad[6000010];
stack <int> stk;
vector <int> va;
queue <int> state;
int n,m,idx=0,num=0,mum=1,cnt=0,T;
int head[500010],dfn[500010],low[500010],vis[500010],next[500010];
int place[500010],siz[500010],se[500010],fa[500010],rev[500010],mrk[500010];
void init()
{
memset(next,0,sizeof(next));
memset(head,0,sizeof(head));
memset(dfn,0,sizeof(dfn));
memset(low,0,sizeof(low));
memset(rev,0,sizeof(rev));
memset(mrk,0,sizeof(mrk));
memset(fa,0,sizeof(fa));
memset(siz,0,sizeof(siz));
memset(rev,0,sizeof(rev));
memset(se,0,sizeof(se));
memset(vis,0,sizeof(vis));
while(!stk.empty()) stk.pop();
num=0,mum=1,idx=0,cnt=0;
va.clear();
}
void add(int u,int v)
{
num++;
ed[num].u=u;
ed[num].v=v;
ed[num].last=head[u];
head[u]=num;
}
void tarjan(int u)
{
dfn[u]=low[u]=++idx;
stk.push(u),se[u]=1;
for(int i=head[u];i;i=ed[i].last)
{
int v=ed[i].v;
if(!dfn[v])
{
tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(se[v])
low[u]=min(low[u],dfn[v]);
}
if(dfn[u]==low[u])
{
cnt++;int t=-1;
while(t!=u)
{
t=stk.top(),stk.pop();
place[t]=cnt;
siz[cnt]++,se[t]=0;
rev[cnt]=t;
}
}
}
void ade(int u,int v)
{
mum++;
ad[mum].v=v;
ad[mum].last=next[u];
next[u]=mum;
}
void ReBuild()
{
mum=1,idx=0;
memset(next,0,sizeof(next));
for(int i=1;i<=num;i++)
{
int u=ed[i].u,v=ed[i].v;
if(dfn[u] && dfn[v] && vis[u] && vis[v] && place[u]!=place[v])
ade(place[u],place[v]),ade(place[v],place[u]);
}
memset(dfn,0,sizeof(dfn));
memset(low,0,sizeof(low));
}
void Tarjan(int u)
{
dfn[u]=low[u]=++idx;
for(int i=next[u];i;i=ad[i].last)
{
int v=ad[i].v;
if(i==(fa[u]^1)) continue ;
if(!dfn[v])
{
fa[v]=i;
Tarjan(v);
low[u]=min(low[u],low[v]);
if(low[v]>=dfn[u] && u!=place[1] && siz[u]==1 && !mrk[rev[u]])
va.push_back(u);
}
else low[u]=min(low[u],dfn[v]);
}
}
void bfs(int S)
{
while(!state.empty()) state.pop();
state.push(S),vis[S]=1;
while(!state.empty())
{
int u=state.front();
state.pop();
for(int i=next[u];i;i=ad[i].last)
{
int v=ad[i].v;
if(!vis[v])
vis[v]=1,state.push(v);
}
}
}
int main()
{
freopen("i.in","r",stdin);
freopen("i.out","w",stdout);
scanf("%d",&T);
while(T--)
{
init();
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
int u,v;
scanf("%d%d",&u,&v);
if(u!=v) add(u,v),ade(v,u);
else mrk[u]=1;
}
tarjan(1);
if(!dfn[n])
{
printf("0\n\n");
continue ;
}
bfs(n);
ReBuild();
if(siz[place[n]]==1 && !mrk[n]) va.push_back(place[n]);
Tarjan(place[1]);
if(siz[place[1]]==1 && !mrk[1]) va.push_back(place[1]);
printf("%d\n",va.size());
for(int i=va.size()-1;i>=0;i--)
printf("%d ",rev[va[i]]);
printf("\n");
}
return 0;
}