有向图限制性割点 (概率 或 tarjan)

i

10.14

思路:
先缩一遍强连通,如果一个点所属的强连通分量大小不是1或者有自环则不行,否则将所有1号点能到达的边与能到达n号点的边抽出来建一个新图,考察每个点是不是割顶即可。(后一步也可以按照拓扑序从小到大,存一个“当前访问过的点延伸出的最远的边”,如果之前所有最远的边都没有超过当前点,则这个点是一个答案。
还有一种方法就是算概率,通过递推转移得到所有点到达的概率,然后判1即可(真是妙极了)。但是因为图比较大精度容易出问题,所以我们考虑在1给予一个很大的流量,然后尽量平均的分给流出的各点(保证在流到n之前还有余流可以分配),最后找那些经过的流量与到达n的流量相同的点。(真是妙极了)

贴一份berrykanry的代码(自己的找不到了。。。反正是总结思路为主,代码什么的意思意思而已)
注:数据很迷,所以做题并不重要,主要是思路!

#include<stdio.h>
#include<cstring>
#include<stack>
#include<vector>
#include<queue>
#include<algorithm>
using namespace std;

struct edge
{
    int u,v,last;
}ed[2000010],ad[6000010];

stack <int> stk;
vector <int> va;
queue <int> state;

int n,m,idx=0,num=0,mum=1,cnt=0,T;
int head[500010],dfn[500010],low[500010],vis[500010],next[500010];
int place[500010],siz[500010],se[500010],fa[500010],rev[500010],mrk[500010];

void init()
{
    memset(next,0,sizeof(next));
    memset(head,0,sizeof(head));
    memset(dfn,0,sizeof(dfn));
    memset(low,0,sizeof(low));
    memset(rev,0,sizeof(rev));
    memset(mrk,0,sizeof(mrk));
    memset(fa,0,sizeof(fa));
    memset(siz,0,sizeof(siz));
    memset(rev,0,sizeof(rev));
    memset(se,0,sizeof(se));
    memset(vis,0,sizeof(vis));
    while(!stk.empty()) stk.pop();
    num=0,mum=1,idx=0,cnt=0;
    va.clear();
}

void add(int u,int v)
{
    num++;
    ed[num].u=u;
    ed[num].v=v;
    ed[num].last=head[u];
    head[u]=num;
}

void tarjan(int u)
{
    dfn[u]=low[u]=++idx;
    stk.push(u),se[u]=1;
    for(int i=head[u];i;i=ed[i].last)
    {
        int v=ed[i].v;
        if(!dfn[v])
        {
            tarjan(v);
            low[u]=min(low[u],low[v]);
        }
        else if(se[v])
            low[u]=min(low[u],dfn[v]);
    }
    if(dfn[u]==low[u])
    {
        cnt++;int t=-1;
        while(t!=u)
        {
            t=stk.top(),stk.pop();
            place[t]=cnt;
            siz[cnt]++,se[t]=0;
            rev[cnt]=t;
        }
    }
}

void ade(int u,int v)
{
    mum++;
    ad[mum].v=v;
    ad[mum].last=next[u];
    next[u]=mum;
}

void ReBuild()
{
    mum=1,idx=0;
    memset(next,0,sizeof(next));
    for(int i=1;i<=num;i++)
    {
        int u=ed[i].u,v=ed[i].v;
        if(dfn[u] && dfn[v] && vis[u] && vis[v] && place[u]!=place[v])
            ade(place[u],place[v]),ade(place[v],place[u]);
    }
    memset(dfn,0,sizeof(dfn));
    memset(low,0,sizeof(low));
}

void Tarjan(int u)
{
    dfn[u]=low[u]=++idx;
    for(int i=next[u];i;i=ad[i].last)
    {
        int v=ad[i].v;
        if(i==(fa[u]^1)) continue ;
        if(!dfn[v])
        {
            fa[v]=i;
            Tarjan(v);
            low[u]=min(low[u],low[v]);
            if(low[v]>=dfn[u] && u!=place[1] && siz[u]==1 && !mrk[rev[u]])
                va.push_back(u);    
        }
        else low[u]=min(low[u],dfn[v]);
    }
}

void bfs(int S)
{
    while(!state.empty()) state.pop();
    state.push(S),vis[S]=1;
    while(!state.empty())
    {
        int u=state.front();
        state.pop();        
        for(int i=next[u];i;i=ad[i].last)
        {
            int v=ad[i].v;
            if(!vis[v])
                vis[v]=1,state.push(v);
        }
    }
}

int main()
{
    freopen("i.in","r",stdin);
    freopen("i.out","w",stdout);
    scanf("%d",&T);
    while(T--)
    {
        init();
        scanf("%d%d",&n,&m);
        for(int i=1;i<=m;i++)
        {
            int u,v;
            scanf("%d%d",&u,&v);
            if(u!=v) add(u,v),ade(v,u);
            else mrk[u]=1;
        }
        tarjan(1);
        if(!dfn[n])
        {
            printf("0\n\n");
            continue ;
        }
        bfs(n);
        ReBuild();
        if(siz[place[n]]==1 && !mrk[n]) va.push_back(place[n]);
        Tarjan(place[1]);
        if(siz[place[1]]==1 && !mrk[1]) va.push_back(place[1]);
        printf("%d\n",va.size());
        for(int i=va.size()-1;i>=0;i--)
            printf("%d ",rev[va[i]]);
        printf("\n");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值