🎉🎉🎉🎉欢迎您的到来😊😊😊
🥬博客主页:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
📝床头铭:将来的我一定会感谢现在奋斗的自己!
目录
粒子群优化算法(Particle Swarm Optimization, PSO)
频率歧视放大器(Frequency Discrimination Amplifier, FDA)
🌈1 概述
本文为了抑制FDA波束方向图的时变特性,提出了一种基于粒子群优化算法的时间调制非线性频偏FDA。根据仿真结果可以说明,该方法可以抑制FDA的时变特性,并且相较于传统时变抑制方法一时间调制频偏和时间调制非线性频偏,得到的波束方向图聚焦性更好。
"基于粒子群优化算法的时间调制非线性频偏FDA(Frequency Discrimination Amplifier)研究"这一课题,涉及了几个关键技术领域:粒子群优化(PSO)、时间调制、非线性频偏以及频率歧视放大器。下面是对这些概念及其在该研究中可能的应用和意义的简要解析:
粒子群优化算法(Particle Swarm Optimization, PSO)
粒子群优化是一种启发式优化算法,灵感来源于鸟群的社会行为,通过模拟鸟群在寻找食物过程中的飞行和信息共享机制来进行搜索最优解。在电子工程和信号处理领域,PSO常用于解决那些难以通过传统方法找到全局最优解的复杂优化问题。在这项研究中,PSO可能被用来优化时间调制非线性频偏FDA的设计参数,以获得最佳的性能指标,如频率分辨率、线性度或信噪比等。
时间调制
时间调制是指在信号处理过程中,根据特定的时间函数改变信号的特性(如幅度、频率或相位)。在本研究中,时间调制可能是用来引入一种动态特性,使得FDA能够更有效地处理或区分不同频率的输入信号。通过适当设计时间调制策略,可以提高系统对频率变化的敏感度或者实现特定的频率响应特性。
非线性频偏
非线性频偏通常指在信号传输或处理过程中,由于器件的非线性效应导致的实际输出频率与理想输出频率之间的偏差。这种偏差在某些应用中是不利的,但在某些情况下也可以被利用来实现特定的功能,比如频率转换或扩频通信。在本研究中,非线性频偏的管理与校正可能是一个重要方面,以确保FDA能够在存在非线性影响的条件下仍能准确地工作。
频率歧视放大器(Frequency Discrimination Amplifier, FDA)
频率歧视放大器是一种能够根据输入信号的频率差异进行选择性放大的电子器件或系统。它通常用于需要高频率分辨力的应用,如通信系统中的信号解调、雷达信号处理或是频谱分析等领域。在这个研究背景下,设计一个能够有效处理非线性频偏并采用时间调制技术的FDA,目的在于提升其在复杂信号环境下的性能和鲁棒性。
综上所述,这项研究旨在利用粒子群优化算法来设计和优化一个具有时间调制特性的非线性频偏FDA,目的是为了在面临频率偏差和复杂信号环境时,该系统能够提供更精准的频率识别和放大能力,从而拓展其在高端通信、雷达技术和精密测量等领域的应用潜力。
🌟2 运行结果
部分代码:
%% TMLFO-FDA
clc;clear ;close;
%% ------TMLFO-FDA雷达参数设置
j=sqrt(-1);
M=18; %发射阵元数目
f0=5e9; %载波中心频率
delta_f=2000; %相邻阵元频率偏移
c=3e8; %光速
lamda=c/f0; %波长
d=lamda/2; %阵元间距
D=d*(0:M-1);
Ru=c/delta_f; %最大无模糊距离
theta=(-90:1:90)*pi/180; %测量角度向量
R=linspace(0,3e5,1000); %测量距离向量
f=f0+(0:M-1)*delta_f; %阵元载频向量(均匀线性增加)
R0 = 1e5; %天线指向目标的距离
theta0 = 30/180*pi; %%天线指向目标的角度
T=linspace(0,0.2e-3,500);% 一个Tp
g=log((1:M));
%% ----波束方向图 t=0ms
P1 = zeros(length(theta),length(R)); %波束方向图
for n = 1 : length(theta)
for m = 1 : length(R)
% Delta_f=TMLFO(f0,d,c,M,theta0,R0,0.01e-3);
% a1=exp(-j*2*pi/c*(Delta_f'*R(m)-f0*D'*sin(theta(n)))); %导向矢量
% w=exp(-j*2*pi/c*(Delta_f'*R0-f0*D'*sin(theta0)));
a1=tmfo_AF(g,theta0,R0,theta(n),R(m),T(1));
w1=ones(M,1);
P1(n,m) =dot(a1,w1);
end
end
P1=P1';
figure(1);
imagesc(theta*180/pi,R,abs(P1)/max(max(abs(P1))));
xlabel('\theta^o'); ylabel('R/m');
axis tight; axis xy;
title('');
colorbar;
%% -----时间角度维波束方向图
P2 = zeros(length(theta),length(T)); %波束方向图
for n = 1 : length(theta)
for m = 1 : length(T)
% Delta_f=TMLFO(f0,d,c,M,theta0,R0,T(m));
a2=tmfo_AF(g,theta0,R0,theta(n),R0,T(m));
w2=tmfo_AF(g,theta0,R0,theta0,R0,T(1));
% a2=exp(-j*2*pi/c*(-Delta_f'*T(m)*c-D'*f0*sin(theta(n))+Delta_f'*R0)); %导向矢量
% w2=exp(-j*2*pi/c*(-Delta_f'*T(1)*c-D'*f0*sin(theta0)+Delta_f'*R0));
% w2=ones(12,1);
P2(n,m) =w2'*a2;
end
end
%% 画图:时间角度维
% P2=P2';
figure(2);
imagesc(T,theta*180/pi,abs(P2)/max(max(abs(P2))));
ylabel('\theta^o'); xlabel('时间/ms');
axis tight; axis xy;
title('');
colorbar;
%% --------------时间距离维波束方向图
P3 = zeros(length(R),length(T)); %波束方向图
for n = 1 : length(R)
for m = 1 : length(T)
a3=tmfo_AF(g,theta0,R0,theta0,R(n),T(m));
w3=tmfo_AF(g,theta0,R0,theta0,R0,T(1));
% Delta_f=TMLFO(f0,d,c,M,theta0,R0,T(m));
% a3=exp(-j*2*pi/c*(-Delta_f'*T(m)*c+Delta_f'*R(n)-D'*f0*sin(theta0))); %导向矢量
% w3=exp(-j*2*pi/c*(-Delta_f'*T(1)*c+Delta_f'*R0-D'*f0*sin(theta0)));
P3(n,m) =w3'*a3;
end
end
%% 画图:时间距离维波束方向图
% P3=P3';
figure(3);
imagesc(T,R,abs(P3)/max(max(abs(P3))));
ylabel('R/m'); xlabel('时间/ms');
axis tight; axis xy;
title('');
colorbar;
⛳️3 参考文献
[1]陈楚舒,盛川,谢军伟,王博,单泉铭.非线性频偏FDA对测向系统的欺骗研究[J].空军工程大学学报(自然科学版),2020,21(03):70-77.
[2]顾斯祺. 频控阵波束综合技术及其优化设计研究[D].南京理工大学,2019.DOI:10.27241/d.cnki.gnjgu.2019.000853.
💥4 Matlab代码实现
tmfo_AF.m为时间调制频偏FDA导向矢量函数;
TMFO_FDA为仿真时间调制频偏FDA波束方向图;
TMLFO_FDA为仿真时间调制对数频偏FDA波束方向图;.
non_liner_a.m为非线性频偏FDA的导向矢量函数;.
cost_function1.m为PSO算法的代价函数;
pso2.m为进过PSO算法优化后的FDA每个阵元频偏系数矢量函数;
pso_TMFO_fda.m为仿真经过PSO算法优化后的时间调制非线性频偏FDA波束方向图。